The power of multi-objective calibration: Two case studies with SWAT

Sander Huisman

Thorsten Pohlert, Lutz Breuer & Hans-Georg Frede

Justus-Liebig-Universität Gießen, Germany

Institut für Landschaftsökologie und Ressourcenmanagement

The power of multi-objective calibration: A case study with SWAT

Sander Huisman

Thorsten Pohlert, Lutz Breuer & Hans-Georg Frede

Justus-Liebig-Universität Gießen, Germany

Institut für Landschaftsökologie und Ressourcenmanagement

Introduction to Calibration

SFB 299

Vrugt (2004)

- \rightarrow Most widely used calibration method
- \rightarrow Visual comparison of measured and simulated data
- \rightarrow Semi-intiutive trial and error process for parameter adjustment
- \rightarrow Closeness implicitly evaluated with several (>3) criteria
- \rightarrow Excellent model calibrations, but manual calibration...
 - is highly labor-intensive (human resources)
 - is difficult to learn
 - procedures are model-dependent
 - results are user-dependent

- → Algorithms that optimize an objective function by systematically searching the parameter space according to a fixed set of rules
 - Local search algorithms
 - Nelder and Mead (Simplex) algorithm
 - Levenberg-Marquardt
 - Gauss-Newton
 - Global search algorithms
 - Simulated Annealing
 - Genetic algorithms
 - Shuffled Complex Evolution

→ Automation of calibration requires the formulation of "closeness" measures (objective functions)

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (d_i - o_i(\theta))^2}$$

$$MAE = \frac{1}{n} \sum_{i=1}^{n} \left| d_i - o_i(\theta) \right|$$

$$NS = 1 - \frac{\frac{1}{n} \sum_{i=1}^{n} (d_i - o_i(\theta))^2}{\frac{1}{n} \sum_{i=1}^{n} (d_i - \overline{d}_i)^2}$$

 $BIAS = \frac{1}{n} \sum_{i=1}^{n} d_i - o_i(\theta)$

$$TMVOL = \sum_{j=1}^{n_{month}} \left(\frac{1}{n_{day}(i)} \frac{1}{n} \sum_{i=1}^{n_{day(i)}} (d_i - o_i(\theta)) \right)^2$$

Different evaluation criteria

SFB 299

Gupta et al. (1998)

Different output variables

- \rightarrow Calibration against discharge (Q) with a high efficiency (~0.93)
- → Does a good fit to measured discharge result in good predictions of other state variables?

Right for the Wrong Reasons

SFB 299

Seibert and McDonell (2002)

Less Right for the Right Reasons

→ Best overall agreement for GW and discharge

SFB 299

- → Model efficiency for
 discharge decreased from
 0.93 to 0.84
- → Consistency with perceptual model strongly increased

Seibert and McDonell (2002)

 \rightarrow Different objective functions result in different optimal parameters

- Is there an "optimal parameter set" when using multiple objectives ?
- → The optimal parameter set for one signal might not be the best parameter set for another signal
 - Can we find a comprimise that is satisfactory for all signals?
- \rightarrow Three common approaches to multi-objective calibration
 - Pareto-optimal parameter sets
 - Aggregation of single objectives to a global objective criterion
 - GLUE methodology

Calibration Lysimeter Brandis

		JFB 277					
Table 1. Prior parameter ranges used in the multi-objective calibration for the lysimeter data.							
Model Parameter	Lower limit	Upper limit					
*Bulk density (BD, g cm ⁻³)	1.45	1.55					
*Available water content (AWC, -)	0.16	0.19					
*Saturated hydraulic conductivity (K _{sat} , mm hr ⁻¹)	0	750					
*Moist soil albedo (ALB, -)	0.20	0.30					
Maximum rooting depth (RD _{max} , mm)	500	2000					
Soil evaporation compensation factor (ESCO, -)	0.1	1.0					
Plant uptake compensation factor (EPCO, -)	0.0	1.0					
Rate factor for humus mineralization (CMN, -)	0.00	0.01					
Residue decomposition factor (RSDCO, -)	0.00	0.10					
Maximum daily denitrification rate (MAX_WDN, kg ha ⁻¹ d ⁻¹)	0.0	0.3					
Maximum daily nitrate uptake (MAX_NUP, kg ha ⁻¹ d ⁻¹)	0.0	10.0					

→ Calibration with 12 years of data for mean monthly percolation, evapotranspiration and nitrate leaching

→ Calibration against two evaluation criteria (bias and NS-efficiency)

Pareto-Optimal Parameter Sets

→ Algorithms to find Pareto front are MOCOM-UA, MOSCEM-UA and the approximation of Madsen (2000).

→ Excessive calibration on one evaluation criteria leads to a detoriation of other criteria

→ Excessive calibration on one output variable leads to a detoriation of other output variables

Aggregation to Global Objective Criteria

- \rightarrow Pareto front esitmation more computationally expensive than single objective calibration (10000 vs. 3000)
- \rightarrow Aggregation to save computation time:

$$GOC_{j} = \sum_{i=1,m} f_{i}(OF_{i,j})$$

→ Weights are based on mean and standard deviation of random sample from parameter space

→ Aggregation often leads to a good trade-off solution, but provides no information on how the strong the compromise is.

→ Many parameter combinations that lead to acceptable simulations (equifinality)

- Step 1: define ranges for each model parameter
- Step 2: define acceptable
- Step 3: run model
- Step 4: reject unacceptable
- Step 5: iterate until enough acceptable runs are obtained

Results of GLUE Methodology I

Table 3. Number of behavioral model runs in the GLUE analysis and the percentage of model runs retained after considering six successive performance criteria.

SFB 299

Total	Percolation (NS > 0.7)	Percolation (Bias < 50)	Actual ET (NS > 0.7)	Actual ET (Bias < 50)	N-leaching (NS > 0.7)	N-leaching (Bias < 50)
157502	78568	3145	2545	2048	157	97
	49.9%	4.0%	80.9%	80.5%	7.7%	61.8%

Results of GLUE Methodology I

SFB 299

→ Percolation and ET can be simulated correctly despite inadequate representation of N (remains of the modular structure of SWAT).

Conclusions

- → Use of multiple objectives makes you realize the deficiencies of single objective calibration
- → Aggregation of objective functions is a relatively computationally inexpensive method to find a decent compromise solution.
- → More advanced methods can indicate model deficiencies, model weaknesses, etc.