Towards a process-oriented HRU-concept in SWAT: Catchment-related control on baseflow and storage of landscape units in medium to large river basins.

Martin Volk¹⁾, J.G. Arnold²⁾, P.M. Allen³⁾, Pei-Yu Chen⁴⁾

¹⁾UFZ - Centre for Environmental Research Leipzig-Halle, Germany ²⁾USDA-ARS Grassland, Soil & Water Research Lab, Temple, Texas, USA ³⁾Baylor University, Department of Geology, Waco, Texas, USA ⁴⁾Blackland Research and Extension Center, TAES, Temple, Texas, USA

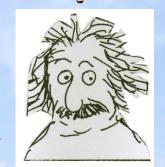
Email: martin.volk@ufz.de

http//www.ufz.de

ſŹ

Landscape units and storage:

- What are the main controlling factors for baseflow and storage?
- Different terrain units and landscape types show different hydrological characteristics (suitable land use and management systems!)
- Degree of complexity depends on landscape heterogeneity and scales
- Description of the hydrological connections (topology) in models is complex (HRUs) → SWAT



UFZ

JSDA-ARS

Procedure:

 Differentiation between valley floor, hill slope and ridge top

 Relating the landscape positions to terrain-based metrics, climate and hydrological analysis

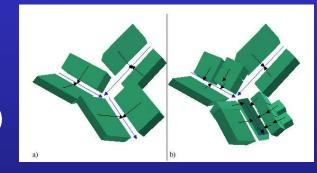
Linkage of the resulting units

Study areas

• Example: Saale river basin and subbasins

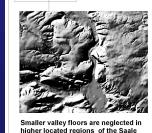
Nr.		Trent									
	Stream flow gauge	Altitude [m as.l.]	Basin area [km³]	Average awc*	Mean annual precip* [mm/a]	Land use distribution [% of basin area]				Mean stream	Tot. runoff
						arable	pasture	forest	urban	flow [m³/s]	[mm/a]**
1	Calbe-G.	53	23719	0,227	625	64.0	3.7	23.1	11.9	121.10	161.01
2	Bernburg	55	19639	0,225	636	60.9	3.6	22.3	11.5	98.80	158.65
3	Halle-Tr.	69	17979	0,224	645	59.8	3.6	23.4	11.4	98.10	172.07
4	Naumburg.	98	11449	0,222	661	56.7	4.7	29.1	8.7	70.05	192.95
5	Saaleck	115	5040	0,218	727	46.6	6.3	38.5	8.0	40.32	252.29
6	Camburg-S.	119	3977	0,218	744	42.8	7.5	41.8	7.2	31.89	252.87
7	Rothenstein	151	3357	0,218	765	41.3	8.6	42.6	6.5	29.32	275.44
8	Rudolstadt	190	2678	0,218	806	38.2	10.7	43.5	6.5	26.77	315.24
9	Saalfeld-R.	203	2120	0,220	789	41.1	13.0	38.3	6.2	20.56	305.84
10	Kaulsdorf	231	1665	0,220	781	43.5	15.9	33.5	5.6	15.98	302.67
11	Eichicht	235	1665	0,220	781	43.5	15.9	33.5	5.6	16.16	306.08
12	Burgk	339	1249	0,212	817	40.4	21.5	31.0	6.3	12.23	308.80
13	Blankenstein	411	1013	0,210	833	39.1	26.7	27.5	6.6	11.08	344.93
14	Hof	467	521	0,206	827	28.7	33.3	30.4	7.3	5.33	322.62
15	Oberkotzau	484	232	0,223	875	17.8	46.1	30.9	5.2	2.68	364.30
16	Weissdorf	489	47	0,223	795	18.4	55.9	19.1	5.3	0.71	476.39

*area-weighted values (AWC available soil water capacity mm H2O/mm Soil), **area-weighted values, calculated from stream flow data



• Excellent data base from joint project

Overview: Existing concepts for HRUs and other "process units"


- Hydrological Similarity Units (HSU), Dynamic Topmodel, (Beven & Freer 2001, Tilch et al., 2002)
- HRU concept by Jena group (PRMS, MMS, OMS; Flügel 1996, Staudenrausch 2001, Bongartz 2002)
 cooperation

Multi-resolution Index for Valley Bottom Flatness

Example: Study area Könnern, Saale River Basin

- Multi-resolution Index for
 Valley Bottom Flatness (MRVBF)
 (Gallant & Dowling 2003)
 - -- cooperation

river basin ("lowness"). In contrast,

most lower or flat regions are

classified as valleys.

JSDA-ARS - UFZ

Agricultural Research

Slope position (USDA Forest Service 1999)

OR

BAY

USD

• Valleys and ridgelines are identified via flow accumulation (Grid module in Arc/Info).

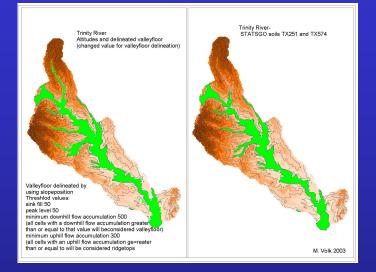
• All cells with a downhill flow accumulation greater or equal than the limit for minimum flow accumulation "valley" will be considered as valley floor, and receive a value of 0 in the outgrid.

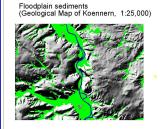
 The "uphill" flow accumulation at a cell is equal to the number of cells downridge of that cell. It is calculated by multiplying elevation by -1 and then calculating downhill flow accumulation.

Slope position (USDA Forest Service 1999)

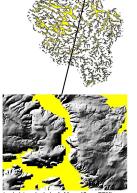
Slope position is calculated for the cells in the output grid as the elevation of each cell relative to the elevation of the valley the cell flows down to and the ridge it flows up to (vertical distance z).
This is presented as a ratio, ranging from 0 (valley floor) to 100 (ridge top).

Method shows good results (better as with object-based program eCognition, using very complex algorithms (2))
 problem is to find the "right" threshold values for defining valley floor, hill slope and ridge top




OR

B,


Slope position (USDA Forest Service 1999) - How to validate?

(a) Floodplain sediments and soils (b) Different scales

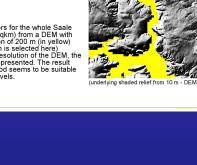
Delineated valleyfloors for the whole Saale River Basin (23,000 gkm) from a DEM with a horizontal resolution of 200 m (in yellow) (the Koennern region is selected here) Despite the coarse resolution of the DEM, the valleyfloor is good represented. The result shows that the method seems to be suitable for different scale levels.

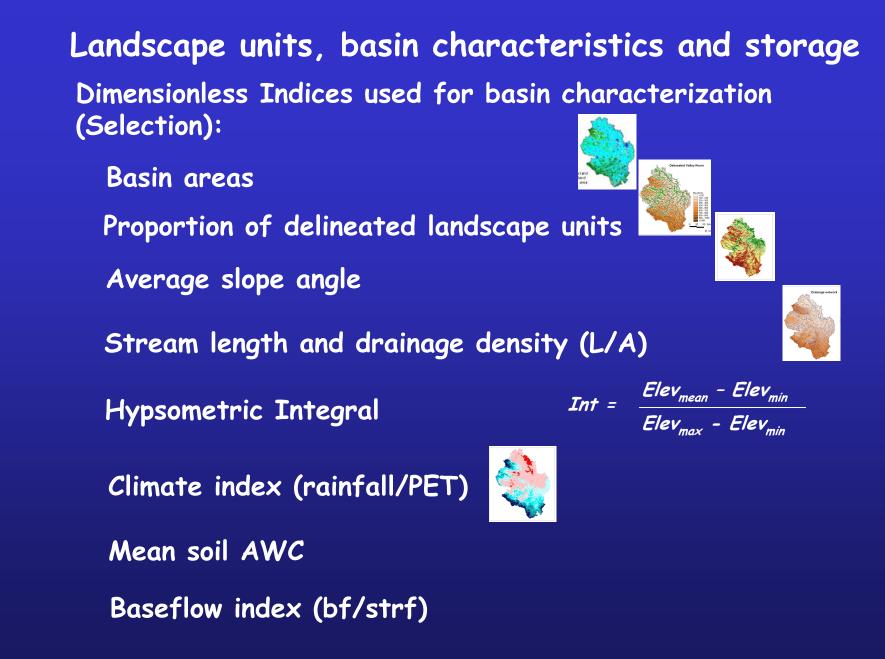
M. Volk 2003

(c) Morphometric parameters

Relief amplitude

Slope angle and landscape positions UWhite Rock Saale UWeisse Elster Ridge top Hill slope valley floor


LS-Factor and landscape positions **LS-Factor** 2.5 White Rock Saale Veisse Elster S-Factor **Ridge top** Hill slope vallev floor



υĘ

R R

B

Hydrological analysis

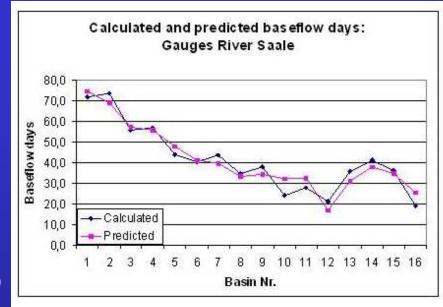
Streamflow data

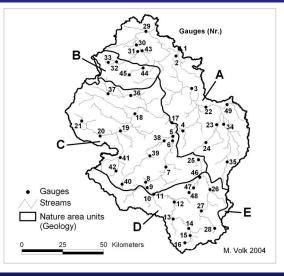
Area-weighted to basins Input for baseflow recession analysis

Baseflow separation and recession analysis

Contribution of baseflow to streamflow

Recession constant "alpha" resp. baseflow days as an indicator for transmissivity and storage. Low number bfd = rapid drainage and little storage High number bfd = slow drainage and high storage




First results

Strongest correlations to:

- basin size (r²= 0.81)
- stream length $(r^2 = 0.81)$
- climate index $(r^2 = 0.75)$
- baseflow index $(r^2 = 0.75)$
- drainage density $(r^2 = 0.72)$
- valley floor $(r^2 = 0.59)$

- Best results for basins >300 km² (more linear behavior)
- Results confirmed by testing a macro model on 49 other gauges of the Saale river basin
- Further development of the macro model

JSDA

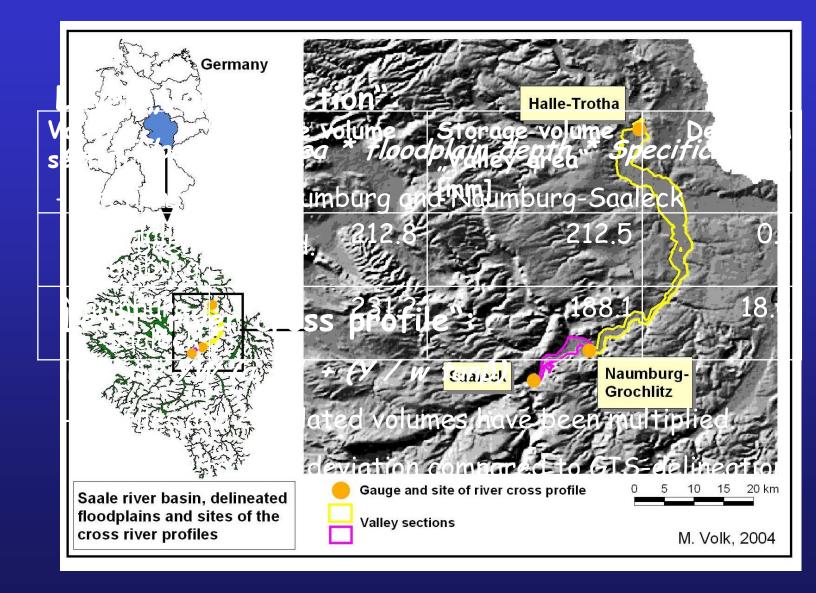
Scale- and catchment-related control on storage behavior

Increasing...

Linear behavior (integrating effects)

Basin area Channel length Climate index Non-linear behavior (importance of single factors) Base flow index Drainage density Subsurface contact time Landscape units (proportion) Topographic Index Land use (arable land) Hypsometric Integral Stream flow response level surface flow Slope, soil, etc. Base flow stream 300 - 500 0 Several thousand Basin size [km²] M. Volk, 2004

Controlling factors



Next steps (1):

- Storage volume on different scale levels testing the methods
- River basin level (1): simple approach:
 V_{FP} = Area_{FP} * Depth_{soil} * Water content variable
- River basin level (2):
 Maximum Baseflow (Filter):
 V_m = Q₀ / a
- Level valley section / river cross profile: comparison calculation "river basin" / "small-size" (numerical approach)

JSDA

Level Valley section / river cross profile: Comparison calculation "River basin"/"small-size" (numerical approach)

BAY LOR

ſŹ

OR

BAY

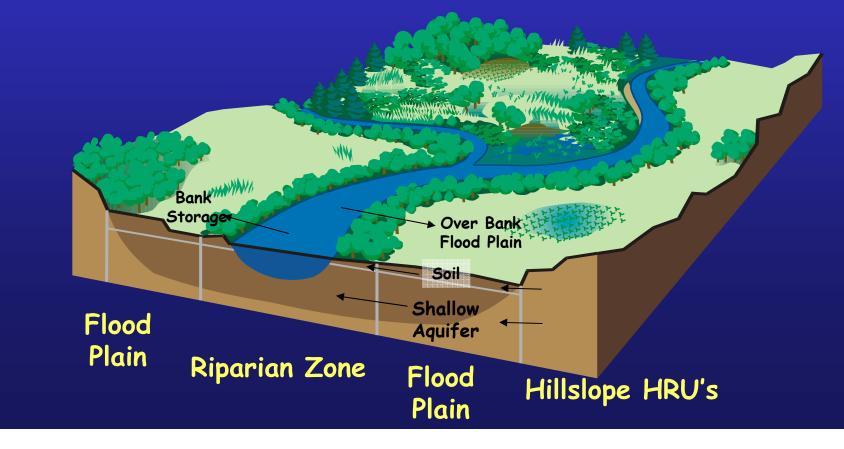
JSDA

Next steps (2)

- Methods for a rule-based delineation of the units (among others streamorder - valley width)
- Maximum Storage of valley floors
- Comparing and testing the new concept and developments in areas with hydrological instrumentation and/or surveys :
 - Linear vs. non-linear methods (coop. with H. Wittenberg)
 - Tracer experiments (isotopes) to quantify the water flows
 - Existing HRU vs. new concept(s)
 - Transforming the application into the Preprocessing tool of AVSWAT

ι£

OR


BAY

USDA

SWAT 200X. Current research:

- "Landscape positions" (new HRUs: valley-, slope- and ridge top areas)
- Riparian zones

(cooperation with other institutes)

Thank you!