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Model concept

Study area Motivation

Results

A N T AL, % e WU
= > Processes in wetlands and groundwater are often not

taken into account in integrated water resources
management (or not understood)

Wetland processes are underrepresented in most
hydrological models

Wetlands may have a large impact on water quality and
quantity

They have to be taken into account in new national and

72 soil types ?ea programmes, like the a1'er' Framo l:se
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Model concept

g:;ﬂl’.'ts“"e“ Water fluxes at the catchment scale

Slope length {L/2)

Evapotranspiration

Groundwater
recharge Rc | weter table depth (H)  \water table

—— o e ———
-_--— —
i

Interflow,

-
Water table
over
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=  Riparian zones and wetlands serve as an interface between upland and river network,
1)  they interacts with groundwater,
2) lateral fluxes from upland pass through riparian zone
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el G oil and \Water Integrated //\odel
Study area

Results ( , Krysanova et al. 1998)

Climate: solar radiation, temperature, & precipitat  ion

Hydrological cycle Nitrogen cycle

Crop/vegetation

n)
"
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Spil prr
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Biomass

Phosphorus cycle
Shallow
groundwater @ @
DI

groundwater

Elbe River Basin
Land use pattern & land management Brandenburg

for application in river basins and at the regional scale
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Model concept . . .
Study area P Hydrological cycle in SWIM: vertical

Results

land use type

net radiation

hydrol. soil type

air temperature

¢ management
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field
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? Soil and groundwater interact only via percolation and capillary rise




Model concept .
Study area P Lateral fluxes in SWIM

Results

sub-basins hydrotopes

river routing aggregation of water , N, P cycling,
(water, N, P, sed.) lateral flows vegetation growth
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? All lateral fluxes from a subbasin come directly to the river network




Model concept

Study area Model Extension
Results

. A riparian zone or wetland is defined as a hydrot  ope
with shallow g-w table (where plant roots can reach groundwater) having

lateral inflow from upland areas

The main changes introduced in the model:

A. implementation of daily groundwater table
dynamics at the hydrotope level and soil-
groundwater interaction,

implementation of nutrient retention in
groundwater and interflow (residence time and
denitrification),

implementation of water and nutrient uptake by
plants from groundwater in riparian zones and
wetlands.
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Model concept .
Study area P A. Groundwater dynamics at

Results the hydrotope level

Slope length (% L)

oD water table is defined
daily for each subbasin

Water table Water table depth (H)
gv) L

Water table

over

drainage base (h)
Drainage base

-«—
D
-«—
-«—
-«—

Return flow
(ewq)
Aquifer base
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+ water table is defined daily
for each hydrotope

- automatic calibration
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(Hattermann et al. 2004)
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Model concept . . .
Study area P B. Nitrogen Retention in

Results Groundwater and Interflow

Classical approach: the
convection-dispersion equation
But:

a) it is nonlinear and has to be
solved numerically

b) high data demand

C = concentration n = eff. porosity
m = aquifer thickness A = turnover coeff
R = faktor of retardation

Simplification:

 Full mixture during the transport process.
» Residence time is normally distributed.

e Linear degradation.

d_G =Cin—Ct ot — AC => Basic equation

at — K = mean residence time,
C. =KC, out = A = turnover coefficient,
’ 1 — C = concentration

— _ A-(UK+M) —(1/K+A)t
Ct,out  “Mtin 1+ K/] (1 e ) +Ct—1,oute




Model concept .
Study area P B. Nitrogen Transport and

Results Retention

Mean residence time alpha

Point sources Deposition Fertilization

Plant uptake,
mineralization,
denitrifikation

Water table

l l lLeaching
with

retention 1 = f(residence time 1, turn over 1)

Transport with
surface flow /

Trans

retention 2 = f(residence time 2, turn over 2)

retention 3 = f(residence time 3, turn over 3)

Plant uptake,

Plant uptake, mineralization,
mineralization, denitrifikation
denitrifikation

Plant uptake, - — e

mineralization, _RH=m—-—— - ==

denitrifikation_. = =~

\a--""
= A
A
P L Denitrifikation
Denitrifikation Denitrifikation

Fred Hattermann, International SWAT Workshop & Conference Ziirich 2005
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Model concept B. & C. Nitrogen retention and

Study area . . .
Results plant uptake: Parameter estimation

R The to the river is calculated following the gradient i
L= Z dzi groundwater table to the river.
i=1

path, permeability,
surface flow and
surface flow. It can be
ere kin md-1is the

hensionless hydraulic

) to > 1000 years).

centr ation of the
catchment sediments. It was ¢ 03) for the Elbe basin
as initial values (a half-life timg espondsto 4 values
between 6-10-4d-*and 2-10-3

The from groundwater and interflow is limited by the av ailable
lateral discharge and was calculated using the flow accumulation method which calculates the
amount of nutrients flowing through a spatial unit of the catchment following the groundwater
gradient, and by the plant demand using a resistanc e function.



Model concept

Study area The Nuthe Basin
PENT S

Gauge station
observation well
precipitation station
climate station

/\/ river system

Berlin

Nuthe basin

Stepenitz
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Model concept .
Study area P The Nuthe Basin:

Results Groundwater Table

Groundwater contour map

il
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Model concept ..
Study area P Evapotranspiration and

Results groundwater recharge

A River Evapotranspiration [mm/a]:
Additional evapotranspiration from
groundwater in wetlands is about 24 % of
the total plant water uptake (~48 % of
river discharge)
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Model concept . .
Study area " Groundwater table dynamics in

Results 9 observation wells

Top: Groundwater dynamic simulated (black lines) an d observed.
Right: Location of the observation wells.
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Model concept . . . . .
Study area P Nitrate Leaching into Riparian

Results Zones

Nitrate-N input from
groundwater to riparian zone

%/ha]
<1
[ ]<2
i <3
] <4
I <5
<75
B < 10
[ |NoData

Nitrate-N input from
interflow to riparian zone

0
o
o
N
<
L
C
=}
N
Q
O
<
Q
1 3
Q
Y-
<
(o
O
3
a
o
<
\7)
X
|
=
[
=
)
o
<
o2
+—
(=}
<
|
Q
+—
f
H
=
<
(=}
£
[
Q
4+
4
[»}
X
e
(V)
1 3
(T




0
o
o
N
<
L
.
=
N
Q
O
<
Q
1 9
Q
Y-
<
(o
O
B]
a
o
<
£\
X
i .
=
[
=
)
o
<
o2
4+
(=}
<
L .
Q
+—
f
H
=
<
(=}
£
j
Q
+
I
[»}
X
e
(V)
1 9
(T

Model concept
Study area
Results

1/1/93  7/1/93  1/1/94 7/1/94 1/1/95 7/1/95 1/1/96  7/1/96  1/1/97 7/1/97  1/1/98  7/1/98

Nitrate Concentration in River

nitrate sim
~ -O- - nitrate obs

m N surface
m N interflow
N base flow

min — max
10t — 9ot
median

Nitrate N concentration:
simulated and observed

Nitrate-N from two major flow paths

Evaluation of the uncertainty of the
results (Latin Hypercube method,
variation of 28 model parameters for
hydrology and nutrient retention):
100%, 80% and median
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Model concept
Study area
Results

Simulated Nitrate-N uptake in
the basin and in riparian zones

N plant uptake
[kg/ha]

[ ]0-20

[ 120-40
[ ]140-60
[ 160-80
] 80- 100

I 100 - 120

[ ] No Data

0 8 Kilometers

Additional
uptake [kg/ha]

I O- 10
= - 20

I 70 - 80
[ ] No Data

6 0 8 Kilometers
e —




Model concept 1 e effect of additional N uptake
Study area In riparian zones
Results on N concentrations in the river

N plant uptake

[katha] Additional

uptake [kg/ha]
. 0- 10
B 10-20
§ 20-30
70-80
No Dat:

river nitrate concentration

T
A ‘1"4
M |
Ui} g
LA
|
|
|

with uptake in riparian zones
without uptake in riparian zones
uptake by plants

difference
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Model concept

Study area Summary and Conclusions
Results

> A correct representation of spatial heterogeneity is necessary
to reproduce the water and nutrient fluxes at the basin scale.

> Riparian zones and wetlands have a high potential to reduce
river flow (additional evapotranspiration) and nutrient loads
(additional plant uptake) to surface water. In our case study
additional evapotranspiration of about 24 % and additional
nitrate uptake of about 6 % were simulated (~ 48 % of river
discharge and ~24 % of river load).

Ecohydrological models integrating relevant hydrological,
biogeochemical and vegetation processes at the river basin scale
can serve as a basis to investigate land use and climate changes
impacts at the regional scale.
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Model concept
Study area
Results
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