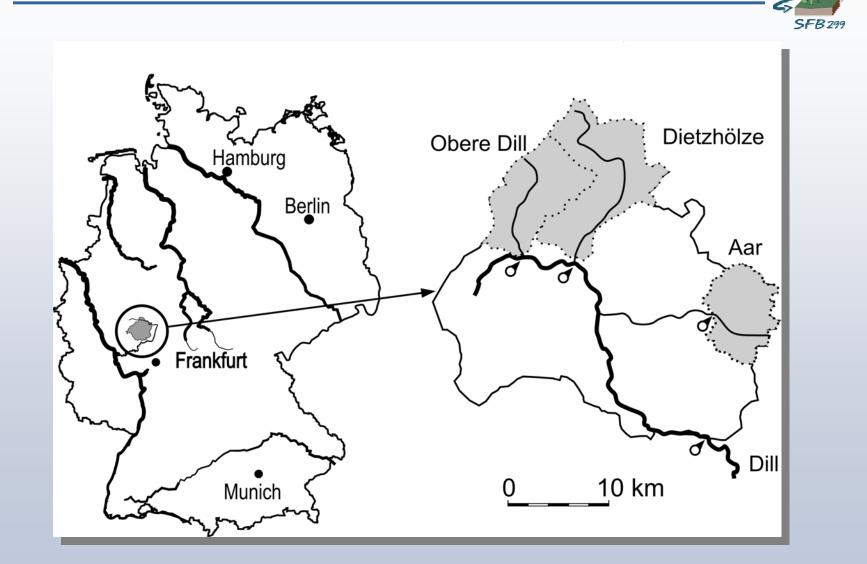
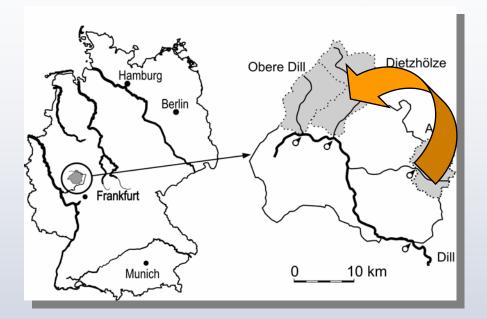
Spatial consistency of automatically calibrated SWAT simulations in the Dill catchment and three of its sub-catchments

Sander Huisman

Lutz Breuer, Klaus Eckhardt & Hans-Georg Frede

Justus-Liebig-Universität Gießen, Germany

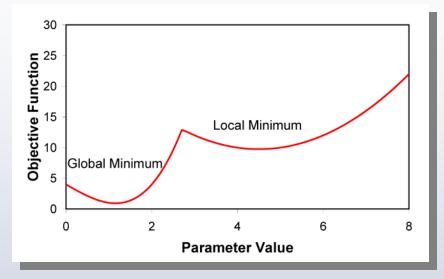

Institut für Landschaftsökologie und Ressourcenmanagement



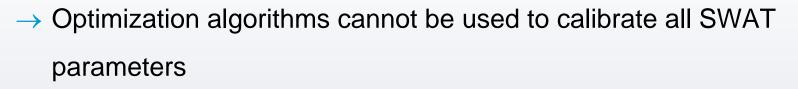
- → Model validation is often limited to applying the calibrated parameters in an independent validation period for the same catchment (simple split-sample test)
- → Aim of this study: Higher-order validation by applying calibration results in different catchments (simple proxy-catchment test)

Research Area

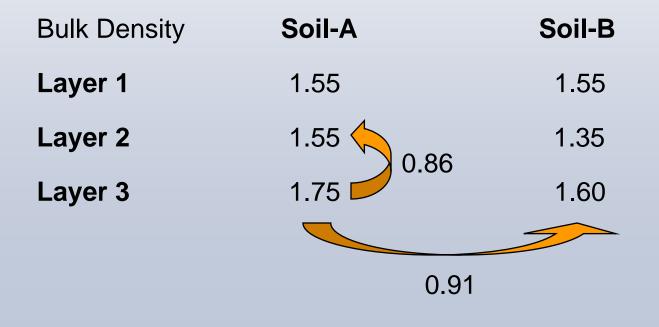
Research Questions


- → How well does a calibrated subcatchment parameterization characterize another subcatchment?
- \rightarrow Is there one parameterization that provides good simulations for the Dill catchment and its three subcatchments simultaneously?

 \rightarrow SWAT-G is an adaption of SWAT for low mountaineous regions


- Enhanced lateral flow through anisotropy between vertical and horizontal hydraulic conductivity
- → SWAT-G calibrated to three hydrological years (1986-1988) for Dill catchment and each subcatchment
- → SWAT-G validated for three hydrological years (1989-1991) and by cross-application of parameterizations in different subcatchments

SCE-UA for Optimization

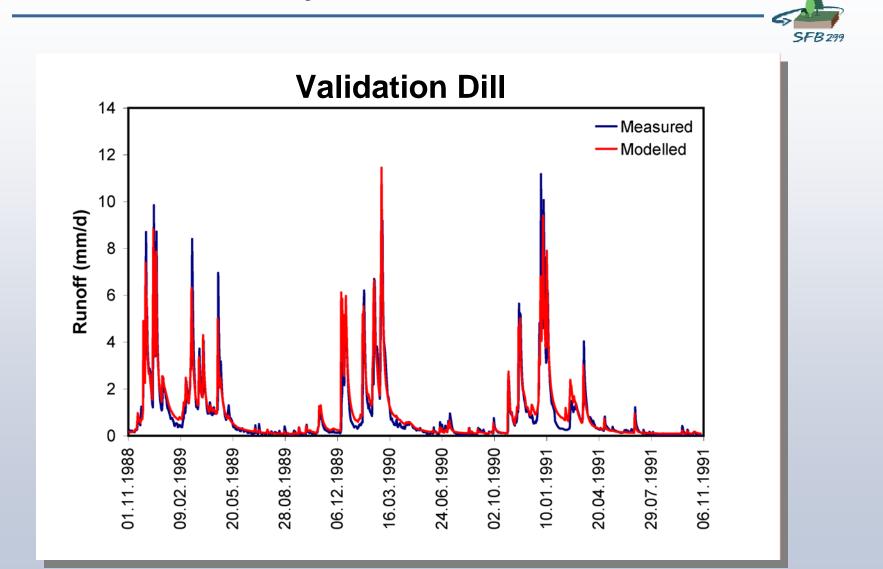

→ Shuffled Complex Evolution
(SCE-UA) is a well-established
algorithm to find the global
minimum of an objective
function within user-defined
bounds.

 \rightarrow Finding the global minimum requires many simulations

→ Define parameter ratios (Eckhardt and Arnold, 2001)

Bounds of Automatic Calibration

	Lower Bound	Upper Bound
Surface runoff lag time (d)	1.000	5.000
Manning N surface runoff (m ^{1/3} s)	0.200	0.500
Groundwater recession coefficient (d ⁻¹)	0.030	0.060
Delay of groundwater recharge (d)	1.000	20.000
Deep aquifer percolation factor (-)	0.000	0.800
Bulk density soil (gcm ⁻³)	1.500	1.600
Bulk density bedrock (gcm ⁻³)	2.510	2.650
Available water content (m ³ m ⁻³)	0.160	0.200
Saturated hydraulic conductivity Soil I (mmh ⁻¹)	1.000	45.000
Saturated hydraulic conductivity Soil II (mmh ⁻¹)	10.000	85.000
Anisitropy factor (-)	2.000	8.000


Red: Parameter ratios

Blue: Assumed constant in research area

Model Efficiency Results

	Calibration	Validation
Dill	0.85	0.80
Aar	0.83	0.83
Dietzhölze	0.83	0.78
Obere Dill	0.80	0.61

- \rightarrow High model efficiency for daily simulations
- → Acceptable drop in efficiency from calibration to validation except for Obere Dill (impact of wet versus dry years?)

Comparison Parameterizations

	Dill	Aar	Dtz	Obd
Surface runoff lag time (d)	1.000	1.000	1.000	1.030
Manning N surface runoff (m ^{1/3} s)	0.497	0.480	0.495	0.477
Groundwater recession coefficient (d ⁻¹)	0.030	0.038	0.035	0.044
Delay of groundwater recharge (d)	19.500	1.090	9.060	9.060
Deep aquifer percolation factor (-)	0.351	0.024	0.010	0.045
Bulk density soil (gcm ⁻³)	1.600	1.600	1.600	1.580
Bulk density bedrock (gcm ⁻³)	2.620	2.630	2.640	2.630
Available water content (m ³ m ⁻³)	0.200	0.200	0.200	0.194
Saturated hydraulic conductivity Soil I (mmh ⁻¹)	44.800	44.500	44.900	1.150
Saturated hydraulic conductivity Soil II (mmh ⁻¹)	84.800	84.900	84.600	84.700
Anisitropy factor (-)	7.990	8.000	7.960	7.800

SFB29

Cross-Validation

	Dill	Aar	Dietzhölze	Obere Dil			
_		CALIBRATION					
Dill	0.85	0.82	0.82	0.79			
Aar	0.84	0.83	0.83	0.80			
Dietzhölze	0.84	0.83	0.83	0.80			
Obere Dill	0.83	0.75	0.83	0.80			
	VALIDATION						
Dill	0.80	0.82	0.77	0.65			
Aar	0.78	0.83	0.78	0.65			
Dietzhölze	0.77	0.82	0.78	0.65			
Obere Dill	0.67	0.69	0.71 0.6				

- \rightarrow Cross-validation succesful for Dill and 2 subcatchments
- \rightarrow Results for Obere Dill also unsatisfactory in cross-validation

 \rightarrow Multi-objective calibration by weighted summing of residuals:

$$SSR_{tot} = \sum w_i SSR_i$$

with $w_i = \frac{1}{\sigma^2}$

$$\sigma^2_{{\it meas},i}$$

→ Weigthing with variance ensures that decrease in residuals has similar value for all catchments

Multi-Objective Calibration I

	Dill	Aar	Dietzhölze	Obere Dill		
_	CALIBRATION					
Dill	0.85	0.85 0.82 0.82 0.				
Aar	0.84	0.83	0.83	0.80		
Dietzhölze	0.84	0.83	0.83	0.80		
Obere Dill	0.83	0.75	0.83	0.80		
'Multi-objective'	0.85	0.83	0.83	0.80		
_	VALIDATION					
Dill	0.80	0.82	0.77	0.65		
Aar	0.78	0.83	0.78	0.65		
Dietzhölze	0.77	0.82	0.78	0.65		
Obere Dill	0.67	0.69	0.71	0.61		
'Multi-objective'	0.79	0.82	0.78	0.65		

There is a set of parameters adequately describing all catchments!

Multi-Objective Calibration II

	Dill	Aar	Dtz	Obd	MO
Surface runoff lag time (d)	1.000	1.000	1.000	1.030	1.000
Manning N surface runoff (m ^{1/3} s)	0.497	0.480	0.495	0.477	0.499
Groundwater recession coefficient (d ⁻¹)	0.030	0.038	0.035	0.044	0.031
Delay of groundwater recharge (d)	19.500	1.090	9.060	9.060	19.200
Deep aquifer percolation factor (-)	0.351	0.024	0.010	0.045	0.344
Bulk density soil (gcm ⁻³)	1.600	1.600	1.600	1.580	1.600
Bulk density bedrock (gcm ⁻³)	2.620	2.630	2.640	2.630	2.640
Available water content (m ³ m ⁻³)	0.200	0.200	0.200	0.194	0.200
Saturated hydraulic conductivity Soil I (mmh ⁻¹)	44.800	44.500	44.900	1.150	45.000
Saturated hydraulic conductivity Soil II (mmh ⁻¹)	84.800	84.900	84.600	84.700	84.900
Anisitropy factor (-)	7.990	8.000	7.960	7.800	7.990

→ The multi-objective parameterization is a mix of the individual sets, but most resembles the Dill parameterization

Conclusions

→ Higher-order validation at least partly successful

- → Despite different optimized parameter sets for each subcatchment, there is one parameter set that adequately describes all subcatchments.
 - Confidence intervals for optimized parameters?
 - Impact of prior parameter ranges?