Enhancement of Tile and Pothole Flow Components in SWAT: *Application to the Walnut Creek Watershed, Iowa*

A. Saleh, D. Bing, J.G. Arnold, and D.B. Jaynes

BJECTIVES

To enhance the SWAT model with new tile drainage and pothole surface storage components (SWAT-M)

Evaluated the SWAT-M using measured data from Walnut Creek watershed (WCW) under the baseline and scenario conditions

METHODS AND MATERIALS

Walnut Creek Watershed (WCW)

- 5130 ha WCW, located in Story county, central lowa
- 78% corn and soybeans
 - About 66% tile drained and 57% of the total surface runoff directly flowed into potholes
 - 10% pothole area

Subbasins, sites and measurement gages in WCW

Tiaer

Distributions of subsurface drains and streams across WCW

TiAER

Monitoring

- Stream flow for sites 330 and 310
- Tile and stream flow for sites 210 and 220
- Precipitation and temperature data from 17 measured sites

Field site surface flume and drainage line monitoring stations

Stream gauging station with weir located on Walnut Creek.

SWAT Model

SWAT is a continuous-time (daily time-step) model which allows data input via GIS. SWAT was developed to predict the effect of different management scenarios on water quality, sediment yields, and pollutant loadings at watershed-level

SWAT - M Modifications

- Depression storage water balance was modified
- Restrictive soil layer
- Soil profile saturation pattern
- Water table depth calculation
- Pothole/HRU orientation

SWAT2000 and SWAT-M Simulations

- Calibration Period (1991-1995)
- Validation Period (1996-1998)
- Scenario (1992-2000)

Scenario

- Beginning in 1997, the LSNT (Late Spring Nitrogen Test) N-fertilizer management program was simulated within sub-basin 220
- The LSNT program consisted of applying an initial 56 kg/ha application of N at or shortly before planting. After the corn plants had grown to a height of 15- to 30-cm (typically mid-June), soil samples were taken and analyzed for NO_3 content to determine the required rate of N to apply by sidedressing

The annual rates of averaged nitrogen fertilizer application

	YEAR									
Sites	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
All	162	149	153	148	164	164	164	164	187	182
220	162	149	153	148	164	164	168*	118*	174*	109*

* Split application based on LSNT (Late Spring Nitrogen Test) treatment (56 kg/ha applied before planting and the rest was applied during June application) (Hatfield et al., 1999; Jaynes et al., 2003).

RESULTS AND DISCUSSION

Water balance comparison

		ET	mr	Stream Discharge			
Year	SWAT-M	SWAT2000	Measured	SWAT-M	SWAT2000	measured	
1992	430.4	550.6	500.0	277.5	127.4	271.0	
1993	507.9	535.6	370.0	636.1	442.4	865.0	
1994	497.3	572.8	440.0	129.4	98.3	69.0	
1995	479.3	545.1	430.0	178.3	101.9	178.0	
Average	478.7	551.0	435.0	305.3	192.5	345.8	

verage and standard deviation (in parenthesis) of total monthly flow during calibration

	m 3/seg					
Site	SWAT2000	Measured	SWAT-M			
210	0.04 (0.05)	0.04 (0.06)	0.06 (0.07)			
220	0.03 (0.03)	0.03 (0.04)	0.04 (0.04)			
310	0.16 (0.20)	0.27 (0.43)	0.25 (0.29)			
330	0.34 (0.41)	0.56 (0.87)	0.49 (0.57)			

verage and standard deviation (in parenthesis) of monthly NO₃-N during calibration

	Kg						
Site	SWAT2000	Measured	SWAT-M				
210	13.8 (42.6)	543.3 (1,178.3)	1,370.3 (2,300.4)				
220	18.5 (66.3)	557.3 (997.8)	652.0 (1,003.5)				
310	71.0 (130.7)	4,143.3 (7,298.5)	6,291.9 (9,951.0)				
330	316.7 (1,046.4)	8,313.9 (15,290.8)	10,187.1 (15,823.9)				

Average monthly Flow During Calibration - Site 330

Flow (m³/s)

TiAER

Month

Average Monthly Flow During Calibration - Site 220

Average Monthly Sub-surface Flow During Calibration Site-220

NO₃ During Calibration - Site 330

NO₃ During Calibration - Site 220

Simulated NO3-N reduction under LSNT treatment at site 220.

Conclusions (1 of 3)

- The modification of tile drain and pothole components of SWAT resulted in better prediction of water balance components for such conditions
- The Avg. and trend of monthly and daily total and subsurface flows predicted by SWAT-M, compared to SWAT 2000, were closer to measured values during both calibration and validation periods at all sites

Conclusions (2 of 3)

- The Avg. monthly Nitrate-N predicted by SWAT2000 were much lower than the measured values
- The patterns of predicted Nitrate-N by SWAT-M were much closer to those of measured values

Conclusions (3 of 3)

- The SWAT-M was able to predict the effect of N-management scenario similar to what was measured during field study
- The modifications regarding tiles and potholes will be incorporated into SWAT 2003

Ongoing Project

- More modification of SWAT to better address pesticides loading in Walnut Creek Watershed.
- Collection of monitoring data such organic nitrogen and Phosphorous (soluble and organic) for model validation.

Thank You

