Directions in Watershed modelling

Modelling of temporary streams in the Mediterranean

Jochen Froebrich

Water Quality Protection and Management Prof. Dr.-Ing. habil. Herwig Lehmann University of Hannover

Presentation overview

Introducing the problem

Introduction of the EU project tempOsim

- general aspects
- current activities
- SWAT related activities
- actual conclusions

Outline of future priorities

idealized seasonal sequence

necessary innovation and improvement

Evaluation and improvement of water quality models for application to temporary waters in Southern European catchments

ENERGY, ENVIRONMENT AND SUSTAINABLE DEVELOPMENT

EVK1-CT-2002-00112

Objectives tempOsim

- To define **requirements** to be met by water quality models
- To develop and test hydrological modules
- To develop and adjust sediment modules to assess accumulation, resuspension and transformation processes
- To modify and improve water quality models
- To apply and verify the modified models

Basic information tempOsim

• duration: Nov 2002 - Oct 2005

• 14 participants (9 countries)

Univ. Hannover	Germany	MSEM	France
CEH Wallingford	UK	UACEG Sofia	Bulgaria
TUC Crete	Greece	NCMR	Greece
EAWAG	Switzerland	Hydrocontrol	Italy
IMAR	Portugal	Univ. Essen	Germany
IRSA	Italy	Univ. Leeds	UK
CSIC	Spain	EC JRC-ISPRA	Italy

• part of the CATCHMOD cluster

Workpackages tempOsim

Assessment: current and improved models

Process analysis: Hydrology and water quality dynamics at flow periods

> Process analysis: Channel bed processes

programming tempQsim modules and model improvement

Model testing concept tempOsim

	SWAT	HSPF	CASCADE	ATHYS- POL	PESERA	EUROSEM
DEGEBE	PT		CEH		LEEDS	
ALBUJON		HE/HAN	CEH		LEEDS	
VENE	EAU			EAU	LEEDS	
VALLCEBRE				EAU/ES		ES
FLUMENDOSA	IRSA			EAU	LEEDS	
TAGLIAMENTO						
KRATHIS		HE			LEEDS	
ISKAR		BUL				

case study sites tempOsim

Irrigation impact

Albujon (Spain)

Exfiltration of ground/ subsurface water assumed, accumulation of nutrients

Long term accumulation of nutrients Albujon (Spain)

instream mass removal

Providing hydrological basic information

flow period: water quantity and water qualityacquisition of rainfall, runoff data

- providing basis information for catchment models
- characterisation of dry and wet periods
- specific contraction and expansion studies at Tagliamento (Tockner at al.)

Processing of available data

Precipitation variability Albujon, SE Spain

(Data source: Instituto Murciano de Investigacion y Desarrollo Agrario y Alimentario)

current activities

Channel bed processes

- plausibility checks
- detailed studies at Tagliamento (Tockner et al.)
- first characterisation of sediments

Rannya Reia Mang

Al1

A19

A18

Fuente Alamo

Al2,3 El Estrecho

A110

Albujon, SE Spain

1							
	sample	OM [%]	total P [mgP/kg]				
	AI7	1,2	686				
`	Al1	1,4	342				
.)	Al8	7,6	2640				
	Al9	2,8	1260				
	Al2	1,6	207				
	Al10	1,9	235				
	Al4	5,8	150				
	AI5	5,8	467				
	Al6	6,5	784				
	Al11	2,8	647				
Domi	Torre Pacheco						
Raint	Rambla de la Albujon Al4 La Puebla Mar Menor						
٦	La Puebla Aló Alo Alí						
	Paso Estrecho						

current activities

La Murta

The PESERA/RDI model

- A physically based model to estimate soil erosion rates at 250-1000 m resolution across Europe
- Based on a partition of precipitation to forecast overland
 flow runoff etc from
 - Climate, land use and topography
- Embedded in GIS for data layers and visualisation
- Developed since 1985 and in EU projects
 - MEDALUS I, II, III, MODEM
 - DESERTLINKS, PESERA, tempQsim
 - (M. Kirkby et al., 2002)

Example of SWAT relevant activities I

Application of SWAT to the Mulargia catchment (Sardinia)

P6 IRSA, Italy

Antonio Lo Porto Anna Maria De Girolamo Filomena De Luca Anna Barra Caracciolo Albero Puddu Maria Zoppini

Main research aims :

- water management and pollution control
- to enhance the water quality of Mulargia reservoir

examples for SWAT application

Processing model input data based on available data

examples for SWAT application

Flumendosa - Campidano hydraulic system

FEATURES

Supplied population: 700.000 in.

Irrigated land: 60.000 ha

Storage capacity: 730 Mm³

stored water at January 7th 2003: 31.468 Mm³

(E.A. Flumendosa)

examples for SWAT application

Relevancy of surface runoff and mass inputs

IRS/

examples for SWAT application

SWAT activities for the Mulargia study site

- processing and inclusion of existing ime series data from the enduser
- design and execution of specific field campaigns
- analyses of applicability of unmodified SWAT

• contribution to the improvement of the model (WP5)

Application of ATHYS-POL and SWAT to the Vene catchment

P8 Hydrosciences (Univ. Montpellier, IRD, CNRS), France

Marie-George TOURNOUD Jean-Louis PERRIN Bernadette PICOT Christian SALLES Christine GRILLOT Claire RODIER

Main research aims :

- water management and pollution control
- to enhance the quality of the Thau lagoon

HYDROSCIENCES Joint Research Unit

HYDROSCIENCES Joint Research Unit

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

HYDROSCIENCES Joint Research Unit

SWAT activities for the Vene study site

- comparison with results of the ATHYS-POL model
 sensitivity of parameters affecting
 - hydrological response of the catchment, at various spatial scales
 (the whole catchment, on subcatchments)
 - hydrological balance (e.g. interception)
 - water quality dynamics at the outlet.
- limitation of time step concepts for event modelling
- impact of the high degrees of freedom in the model
- investigation of potential resuspension

HYDROSCIENCES Joint Research Unit

Application of SWAT to the Degebe catchment (Portugal)

P5 IMAR, Portugal

Ramiro Neves Pedro B. Galvão Frank Braunschweig Sibila Sousa

Main research aims :

 consideration of pool formation and related water quality processes

to enhance the quality of the Alqueva dam

examples for SWAT application

Overview study site location

examples for SWAT application

SWAT application Ardila irrigation system

Pedro B. Galvão

Serpa reservoir

Provision of data sets for model testing

preliminary model results

examples for SWAT application

next SWAT activities for the Degebe study site

- validation of runoff modelling at Ardila subsystem
- comparison with Pesera (M. Kirkby, Univ. Leeds) and Cascade (D. Cooper, CEH) results
- processing of hydrological data for Degebe study site
- installation of automatic samplers and process studies
- development of model concepts for consideration of dry period and resuspension dynamics

examples for SWAT application

Terrestrial mass inputs

mass accumulation, erosion, flushing of fertilizers, fecals

accumulation of mass in sediments

- by
- remaining and reducing flow conditions
- waste water inflow
- input from non-point sources

biochemical processes

- formation and decomposition of OM
- nutrient turnover

resuspension and first flush events

- still difficult to consider wide gradient in specific stream characteristics and water management problems in the Mediterranean adequately in models
- more focus on terrestrial mass accumulation and first flush inputs from organic sediments/adsorbed nutrients
- shallow aquatic systems (lagoons) suffers especially from nutrient inputs
- need for better monitoring of bigger run off events

future adressing of water crisis

Directions in Watershed modelling