Using SWAT and an optimization algorithm for quantifying ecosystem services and trade-offs in large river basins – Challenges and potential solutions

Martin Volk, Sven Lautenbach, Michael Strauch, Felix Witing, Ralf Seppelt
Overall modelling objective:

Exploring the capacity of landscapes for providing different ecosystem services (and depicting their trade-offs)

- Food (provisioning service)
- Fuel / Bioenergy (provisioning service)
- Water (quality) (regulating service)
- Water (quantity) (provisioning service)
Overall modelling objective:

Exploring the capacity of landscapes for providing different ecosystem services (and depicting their trade-offs).

- Water (quality)
- Water (quantity)
- Food
- Fuel / Bioenergy

Trade-offs of provisioning services.

Foley et al. (2005), Science 309: 570-573
Method: Watershed modeling within an optimization framework

- NSGA II optimization
- Objective 1
 - Low flow
 - Average nitrate conc.
 - Food yield
 - Bioenergy yield
- Crop rotation schemes
 - Food
 - Bioenergy
- Arable land
- Non arable land
- Climate time series
- Soil data
- Terrain data

Lautenbach, Volk, Strauch, Whittaker & Seppelt (2013): Environmental Modelling & Software (accepted)
Method: Watershed modeling within an optimization framework

Trade-offs between:
- Food & fodder vs. bioenergy
- Bioenergy vs. nitrate conc.
- Total yield vs. low flow
Combining scenarios and optimization

Scenarios Analysis:
- Scenario A
- Scenario B
- Scenario C
- Scenario D
- Recent Situation

Optimization:
- Marginal benefit
- Pareto frontier

Seppelt, Lautenbach, Volk (2013), Current Opinion in Environmental Sustainability
DOI: 10.1016/j.cosust.2013.05.002
Optimization-based trade-off analysis of biodiesel crop production for managing an agricultural catchment

Sven Lautenbach, Martin Volk, Michael Strauch, Gerald Whittaker, Ralf Seppelt

University of Bonn, Institute for Geography and Geoinformation, Nussallee 1, 53115 Bonn, Germany
DRE - Helmholtz Centre for Environmental Research, Department of Computational Landscape Ecology, Permoserstr. 15, 04318 Leipzig, Germany
Dresden University of Technology, Institute of Soil Science and Site Ecology, Pionierstr. 18, 01307 Dresden, Germany
USDA, ARS, National Peanut Seed Production Research Center, 1430 SW Campus Way, Corvallis, OR 97333-7302, USA
Martin-Luther University Halle-Wittenberg, Faculty of Natural Sciences III, Institute of Geoinformatics, Germany

ABSTRACT

Political agendas worldwide include increased production of biofuel, which multiplies the trade-offs among conflicting objectives, including food and fodder production, water quantity, water quality, biodiversity, and ecosystem services. Quantification of trade-offs among objectives in bioenergy crop production is most frequently accomplished by a comparison of a limited number of plausible scenarios. Here we analyze biophysical trade-offs among bioenergy crop production based on rape seed, food crop production, water quantity, and water quality in the Parche catchment in Central Germany. Based on an integrated river basin model (SWAT) and a multi-objective genetic algorithm (NSGA-II), we estimated Pareto-optimal frontiers among multiple objectives. Results indicate that the same level of bioenergy crop production can be achieved at different costs with respect to the other objectives. Intermediate rapeseed production does not lead to strong trade-offs with water quality and low flow if a reduction of food and fodder production is accepted. Compared to solutions based on maximizing food and fodder yield, solutions with intermediate rapeseed production even improve with respect to water quality and low flow. If rapeseed production is further increased, negative effects on low flow prevail. The major achievement of the optimization approach is the quantification of the functional trade-offs for the feasible range of all objectives. The application of the approach provides the results of what is in effect an infinite number of scenarios. We offer a general methodology that may be used to support recommendations for the best way to achieve certain goals, and to compare the optimal outcomes given different policy preferences. In addition, visualization options of the resulting non-dominated solutions are discussed.

ARTICLE INFO

Article history:
Received 13 December 2012
Received in revised form 15 June 2013
Accepted 15 June 2013
Available online

Keywords:
River basin management
Water quality
Bioenergy
Land
Genetic algorithms
Crop rotation schemes

1. Introduction

Increasing energy demand together with fluctuating oil prices and concerns about the negative effects of climate change have focused attention on alternative energy resources. Bioenergy plants designed for biofuel production offer one of the major alternatives (Graham-Rowe, 2011; Robbins, 2011; Zhovnev et al., 2011). The Renewable Energy Roadmap of the European Union (European Commission, 2007) sets the goals of a 20% share of European energy consumption by 2020 and a binding 10% share of renewable energy use in the fuel sector. Within that framework, the member states define their own national targets. Germany aims at increasing its share of energy from renewable resources in final consumption from 5.8% in 2005 to 18% in 2020 (Först-Bürgfeld, 2009). Supported by tax exemptions and quota obligations, the use of biofuels in the German transport sector has already increased from 3.8% in 2005 to 7% in 2007 (German Environmental Ministry, 2009). In 2008, the largest share (38%) of renewable energy production in Germany was from biomass (German Environmental Ministry, 2009).

While the target for bioenergy production has already been set by legislation, a quantitative evaluation of the costs and benefits of bioenergy production is just starting. At present, the first generation bioenergy crops compete with food and fodder production on arable land. Negative effects of increasing bioenergy production are
Challenges and key considerations

Pre-analysis of historical data, e.g. trends in water quality

Average Nitrate-N conc. [mg/l] in period 1992-2009

Trends (trend-free-pre-whitening procedure):

Nitrate-N reduction per year (average of 1992-2009)

- 0-1 %
- 1-2 %
- 2-3 %
- >3 %

Significance:
- no trend
- significant (p<0.05)
Challenges and key considerations

Pre-analysis of historical data, e.g. trends in water quality

Average Nitrate-N concentration [mg/l] in period 1992-2009

...but:

→ partly **contrary development of streamflow** in Northwestern and Southeastern mountains

→ **more distinct decrease** of MQ in the Northwest
Challenges and key considerations

Water quality input data (point sources)

○ **Problem:**

Large scale (multiple states, huge amount of (different) data)

○ **Solution:**

- Point source estimation (e.g. nitrate loads) using population equivalents of water treatment plants (readily available data)

Only for this catchment:

350 WWTP
198 industrial discharge points
(in total >1000 t N and >100 t P/a)
Challenges and key considerations

Water quality input data (non-point sources)

- **Problem:** Large scale (multiple states, huge amount of (different) data), data protection law

- **Solution:**
 - Non-point sources (agriculture) using fertilizer inputs based on statistics of the fertilizer advisory systems (e.g. BEFU) of the state authorities and yield statistics
Challenges and key considerations

Agricultural management settings

Management areas

Agricultural operating systems

Crops & crop management

Tillage systems

Available crop rotations, type of fertilizer

Pool of crop rotations (regionally differentiated & actually practiced)

Pool of management settings

Management files

Statistics on the level of management areas

Statistics of fertilizer advisory system, official recommendations & regulations, Expert knowledge

Winter wheat

Corn silage

Rapeseed

Conventional

Conservation tillage

Spatial localization
Challenges and key considerations

Spatial calibration strategies

Equifinality in inverse modeling

• Smaller, relatively uniform catchment

Input \[\leftrightarrow\] MODEL \[\leftrightarrow\] Output

• Larger, heterogeneous catchment

Input \[\leftrightarrow\] MODEL \[\leftrightarrow\] Output

Calibration (1997-2001)

<table>
<thead>
<tr>
<th>Nash-Sutcliffe</th>
<th>NSE</th>
<th>Valid</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.50 - 0.00</td>
<td>0.74</td>
<td>0.65</td>
</tr>
<tr>
<td>0.00 - 0.10</td>
<td>0.58</td>
<td>0.66</td>
</tr>
<tr>
<td>0.10 - 0.20</td>
<td>0.42</td>
<td>0.29</td>
</tr>
<tr>
<td>0.20 - 0.30</td>
<td>0.45</td>
<td>0.10</td>
</tr>
<tr>
<td>0.30 - 0.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.40 - 0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.50 - 0.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.60 - 0.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.70 - 0.80</td>
<td>0.19</td>
<td>-0.49</td>
</tr>
<tr>
<td>0.80 - 0.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.90 - 1.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Validation (2003-2005)

<table>
<thead>
<tr>
<th>Outlet</th>
<th>Loess Region</th>
<th>Loess-Foothills</th>
<th>Foothills</th>
<th>Mountain Ridge</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSE</td>
<td>Valid</td>
<td>NSE</td>
<td>Valid</td>
<td>NSE</td>
</tr>
<tr>
<td>0.64</td>
<td>0.57</td>
<td>0.58</td>
<td>0.74</td>
<td>0.52</td>
</tr>
</tbody>
</table>
Challenges and key considerations

Spatial optimization strategies

Optimize spatial land management for whole River basin
OR
for smaller subbasins?

Both, relevant objective functions and „optimal“ solutions might be scale dependent!
Conclusions

- Analyzing historical data before starting with the modeling helps to detect possible interferences and trends (improves systems knowledge)

- Modeling-optimization frameworks, such as SWAT-NSGA, are useful tools for identifying trade-offs between different ecosystem services

- However, modeling on larger scales has to account for:
 - scale-related needs to generalize input data (e.g. agricultural management)
 - appropriate (multi-site) calibration strategies