

Coping with challenges in the application of SWIM in a heavily managed lowland region in Central Europe

Ina Pohle¹, Hagen Koch², Tobias Conradt², Anne Gädeke¹, Uwe Grünewald¹

¹Chair of Hydrology and Water Resources Management, Brandenburg University of Technology Cottbus-Senftenberg, Germany ²Research Domain Climate Impacts and Vulnerabilites, Potsdam Institute for Climate Impact Research (PIK), Germany

2014 international SWAT Conference

Brandenburg

Cottbus - Senftenberg

Lusatia – a heavily managed lowland region in Central Europe

Lusatia – a heavily managed lowland region in Central Europe

Impacts on the water balance

Lignite mining: Ground water table lowered prior and during mining operation

- Ground water depression cone
- River discharge strongly increased (Cottbus 32 m³/s instead of natural 12 m³/s)

Welzow open pit mine, Picture: www.fotos-aus-der-luft.de

Lusatia – a heavily managed lowland region in Central Europe

Water management - general challenge for large scale hydrological modelling

Lusatia – a heavily managed lowland region in Central Europe

Impacts on the water balance

Lignite mining: Ground water table lowered prior and during mining operation

- → Ground water depression cone
- River discharge strongly increased (Cottbus 32 m³/s instead of natural 12 m³/s)

Lusatia – a heavily managed lowland region in Central Europe

Impacts on the water balance

Lignite mining: Ground water table lowered prior and during mining operation

- → Ground water depression cone
- River discharge strongly increased (Cottbus 32 m³/s instead of natural 12 m³/s)

Electricity production: Withdrawal of cooling water

Boxberg power plant Picture: www.wikipedia.de

Lusatia – a heavily managed lowland region in Central Europe

Impacts on the water balance

Lignite mining: Groundwater table lowered prior and during mining operation

- Groundwater depression cone
- River discharge strongly increased (Cottbus 32 m³/s instead of natural 12 m³/s)

Electricity production: Withdrawal of cooling water

Water management:

Reservoir operation, transfer via channels
Interannual variability evened out

Aim of the study

 Model set up and parameterization of the Soil and Water Integrated Model SWIM (Krysanova et al., 1998, 2000) which is based on SWAT (Arnold et al., 1994) and MATSALU (Krysanova et al., 1989) to simulate natural water balance components in the region

→ Basis for climate and land use change impact study

→ Prerequisite for climate change adaptation

Challenges in the application of SWIM

in a heavily managed lowland region in Central Europe

Trinational catchment → data availability

 Heavily managed
 model parameterisation by calibration using observed discharge constrained

Calibration for selected subcatchments (all hydrological model parameters)

Calibration for selected subcatchments (most sensitive hydrological model parameters)

Regionalization: physical similiarity and spatial proximity (entire catchments)

Comparison with observed long term pre-mining discharges and simulation results of other models

Comparison with observed long term pre-mining discharges and simulation results of other models

Parameters		Königsbrück	Jänkendorf & Särichen	Großschönau
bff	Base flow factor	0.3	0.3	0.4
cnum1 /cnum2 /cnum3	Curve numbers	50 / 60 / 50	55 / 60 / 60	50 / 55 / 55
ecal	Correction of ETP	1	1,24	1
gwq0	Initial ground water flow	0.2	0.02	0.2
abf1 / abf2	Ground water recession	0.018 / 0.0002	0.023 / 0.00007	0.012 / 0.005
	rates			
del0	Ground water delay	5.5	2.5	1.5
roc2 / roc4	Routing coefficients	1 / 1	1.1 / 1.2	1.1 / 1.1
sccor	Correction of saturated	10	9	2
	hydraulic conductivity			
tsnfall	Snowfall temperatur	0.2	0.1	0
tmelt	Snowmelt temperature	3.6	3	2
smrate	Snowmelt rate	2.3	3.3	2.5
pcfacts	Riparian zone parameter	1	1	1

Calibration for selected subcatchments (all hydrological model parameters)

Parameters		Normalized values for parameters
bff cnum1 /cnum2 /cnum3 ecal gwq0 abf1 / abf2	Base flow factor Curve numbers Correction of ETP Initial ground water flow Ground water recession	gwq0 ecal abf1 cnum3 abf2 abf2 cnum1
del0 roc2 / roc4 sccor	rates Ground water delay Routing coefficients Correction of saturated hydraulic conductivity	del0 bff roc2 pcfacts
tsnfall tmelt	Snowfall temperatur Snowmelt temperature	roc4 smrate
smrate pcfacts	Snowmelt rate Riparian zone parameter	sccor tmelt tsnfall — Königsbrück – – - Jänkendorf und Särichen Großschönau

Ina Pohle et al. Coping with challenges in the application of SWIM in a heavily managed lowland region in Central Europe

Calibration for selected subcatchments (all hydrological model parameters)

Ina Pohle et al. Coping with challenges in the application of SWIM in a heavily managed lowland region in Central Europe

Calibration for selected subcatchments (all hydrological model parameters)

Calibration for selected subcatchments (most sensitive hydrological model parameters)

Regionalization: physical similarity and spatial proximity (entire catchments)

Comparison with observed long term pre-mining discharges and simulation results of other models

Calibration for selected subcatchments (most sensitive hydrological parameters)

Calibration for selected subcatchments (most sensitive hydrological parameters)

Ina Pohle et al. Coping with challenges in the application of SWIM in a heavily managed lowland region in Central Europe

Calibration for selected subcatchments (most sensitive hydrological model parameters)

Regionalization: physical similiarity and spatial proximity (entire catchments)

Comparison with observed long term pre-mining discharges and simulation results of other models

Regionalization: physical similiarity and spatial proximity (entire catchments)

Correction of ETP:	calibrat lowland	ration in hilly areas, only small correction in and areas		
Groundwater recession I	ates:	higher i relation	n lowland than in hilly areas, 1/20	
Correction of hydraulic o	onductiv	vity:	calibration in hilly areas, mean values in lowland areas	
Riparian zone parameter	:	higher i Iowest i (wetland	n hilly areas, In the Spreewald Biosphere Reserve d with channels)	

Regionalization: physical similiarity and spatial proximity (entire catchments)

➔ Model parameter values / ranges for the entire catchments

Parameters		Value	Range
		(Global)	(catchment specific)
bff	Base flow factor	0.3	
cnum1 /cnum2 /cnum3	Curve numbers	50 / 55 / 55	
ecal	Correction of ETP		0.85 – 1.35
gwq0	Initial ground water flow	0.02	
abf1 / abf2	Ground water recession rates		0.01-0.12 / 0.0005 – 0.006
del0	Ground water delay	5.5	
roc2 / roc4	Routing coefficients	1 / 1	
sccor	Correction of saturated		1 – 14
	hydraulic conductivity		
tsnfall	Snowfall temperatur	0.3	
tmelt	Snowmelt temperature	1.2	
smrate	Snowmelt rate	2.2	
pcfacts	Riparian zone parameter		0.6 – 1.0

Regionalization: physical similiarity and spatial proximity (entire catchments)

Calibration for selected subcatchments (all hydrological model parameters)

Calibration for selected subcatchments (most sensitive hydrological model parameters)

Regionalization: physical similiarity and spatial proximity (entire catchments)

Comparison with observed long term pre-mining discharges and simulation results of other models

Comparison with observed long term pre-mining discharges and simulation results of other models

Long term discharge

Comparison with observed long term pre-mining discharges and simulation results of other models

Long term discharge at the Löben gauge station (Schwarze Elster)

Summary and conclusion

Calibration for selected subcatchments (all hydrological model parameters)

Calibration for selected subcatchments (most sensitive hydrological model parameters)

Regionalization: physical similiarity and spatial proximity (entire catchments)

Comparison with observed long term pre-mining discharges and simulation results of other models

Successful model set up + parameterization of SWIM to simulate natural water balance components in the region

General approach also applicable to other catchments

Outlook

- Models are used in a combined climate and land use change impact study (Pohle et al. 2014 a)
- Mining discharge, cooling water demand of the power plants and water management are considered and adaptation measures are discussed (Pohle et al. 2014 b)
- Analysis of potential climate change impacts on mining related water quality issues
- Model comparison SWIM WaSiM-ETH HBV-light: Presentation of Anne G\u00e4deke, "Comparing the eco-hydrological model SWIM to conceptually different hydrological models for climate change impact assessments on low flow" (Friday)

References

Arnold, J. G., Williams, J. R., Srinivasan, R., King, K. W., Griggs, R. H., 1994. SWAT. Soil and Water Assessment Tool. Temple, Texas.

Conradt, T., Koch, H., Hattermann, F. F., Wechsung, F., 2012: Spatially differentiated management-revised discharge scenarios for an integrated analysis of multi-realisation climate and land use scenarios for the Elbe River basin. Regional Environmental Change. pp. 1-16.

Conradt, T., Koch, H., Hattermann, F. F., Wechsung, F., 2012: Precipitation or evapotranspiration? Bayesian analysis of potential error sources in the simulation of sub-basin discharges in the Czech Elbe River basin. Regional Environmental Change 12. pp. 649-661.

Grünewald, U., Kaltofen, M., Kaden, S., Schramm, M., 2001: Länderübergreifende Bewirtschaftung der Spree und der Schwarzen Elster. KA - Wasserwirtschaft, Abwasser, Abfall 48 (2): pp. 205-213. (in German)

IfWW, 1959. N-A-U-Karte 1921 - 1940 über das Gebiet der Deutschen Demokratischen Republik 1:200 000 Niederschlagshöhen und -gleichen, Abflusshöhen und -gleichen, Unterschiedswerte und -gleichen, Abflüsse und Abflusspenden Institut für Wasserwirtschaft. Berlin. (in German)

Krysanova, V., Meiner, A., Roosaare, J., Vasilyev, A., 1989: Simulation modeling of the coastal waters pollution from agricultural watershed. Ecological Modelling 49 (1-2). pp. 7-29.

Krysanova, V., Müller-Wohlfeil, D. I., Becker, A., 1998: Development and test of a spatially distributed hydrological water quality model for mesoscale watersheds. Ecological Modelling 106 (2-3): pp. 261-289.

Krysanova, V., Wechsung, F., Arnold, J., Srinivasan, R., Williams, J., 2000. SWIM (Soil and Water Integrated Model) User Manual. PIK Report 69. Potsdam Institut für Klimafolgenforschung. Potsdam.

LfULG, Wasserhaushaltsportal Sachsen - Analyse von Durchflussreihen 1951 - 2005. Landesamt für Umwelt, L. u. G. Access date: 19.09.2012. <u>http://www.umwelt.sachsen.de/umwelt/wasser/10890.htm</u> (in German)

Pohle, I., Koch, H., Conradt, T., Gädeke, A., Grünewald, U., 2014: Potential impacts of climate change and regional anthropogeneic activities in Central European mesoscale catchments. Hydrological Sciences Journal. Accepted.

Pohle, I., Koch, H., Gädeke, A., Grünewald, U., Kaltofen, M., Schramm, M., Redetzky, M., Müller, F., 2014: Auswirkungen von Unsicherheiten in Klimaszenarien auf die regionale Wassermengenbewirtschaftung. Korrespondenz Wasserwirtschaft 6(7). pp. 350-354. (in German)

Schwarze, R., Grünewald, U., Becker, A., Fröhlich, W., 1989: Computer-aided analyses of flow recessions and coupled basin water balance investigations. IAHS Publication 187: pp. 78-83.

THANK YOU!!

Post-mining lake Klinge, picture: Radke, LMBV

Lusatian Neisse catchment (Zittau gauging station)

Soil maps of the Lusatian Neisse catchment (Zittau gauging station)

A: European Soil Map EUSIS

B: European Soil Map EUSIS & Soil map of Germany

Ina Pohle et al. Coping with challenges in the application of SWIM in a heavily managed lowland region in Central Europe

Long term monthly discharge at the Zittau gauge station using 3 different soil maps (1961-1990)

Ina Pohle et al. Coping with challenges in the application of SWIM in a heavily managed lowland region in Central Europe

- Different soil maps
 → similar results at the gauge stations can be gained due to parameter calibration
- But: very different results of spatially discretisiced water balance components
- → Good results for the wrong reason?

→ In the end the most detailed soil map was chosen for each country

Lusatia – a heavily managed lowland region in Central Europe

- Climate: average temperature ca. 9°C, annual precipitation ca. 600-650 mm
- Topography: mountain ranges and hilly areas in the south (max. 1000 m), mostly lowland areas in the north
- Land use: mainly cropland and forest
- Large scale open pit lignite mining
- Size of the study region: 16 300 km²

