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Abstract:

With the availability of spatially distributed data, distributed hydrologic models are increasingly used for simulation of
spatially varied hydrologic processes to understand and manage natural and human activities that affect watershed systems.
Multi-objective optimization methods have been applied to calibrate distributed hydrologic models using observed data from
multiple sites. As the time consumed by running these complex models is increasing substantially, selecting efficient and
effective multi-objective optimization algorithms is becoming a nontrivial issue. In this study, we evaluated a multi-algorithm,
genetically adaptive multi-objective method (AMALGAM) for multi-site calibration of a distributed hydrologic model—Soil
and Water Assessment Tool (SWAT), and compared its performance with two widely used evolutionary multi-objective
optimization (EMO) algorithms (i.e. Strength Pareto Evolutionary Algorithm 2 (SPEA2) and Non-dominated Sorted Genetic
Algorithm II (NSGA-II)). In order to provide insights into each method’s overall performance, these three methods were
tested in four watersheds with various characteristics. The test results indicate that the AMALGAM can consistently provide
competitive or superior results compared with the other two methods. The multi-method search framework of AMALGAM,
which can flexibly and adaptively utilize multiple optimization algorithms, makes it a promising tool for multi-site calibration
of the distributed SWAT. For practical use of AMALGAM, it is suggested to implement this method in multiple trials with
relatively small number of model runs rather than run it once with long iterations. In addition, incorporating different multi-
objective optimization algorithms and multi-mode search operators into AMALGAM deserves further research. Copyright 
2009 John Wiley & Sons, Ltd.

KEY WORDS distributed hydrologic model; multi-method search; multi-objective optimization; multi-site calibration; soil and
water assessment tool

Received 22 April 2009; Accepted 12 October 2009

INTRODUCTION

In recent years, hydrological models have been increas-
ingly used by hydrologists and water resources man-
agers to understand and manage natural and human
activities that affect watershed systems. These models
can contain parameters that cannot be measured directly
because of measurement limitations and scaling issues
(Beven, 2000). For practical applications in solving water
resources problems, model parameters are calibrated to
produce model predictions that are as close as possible
to observed data. When calibrating a hydrological model,
one or more objectives are often used to measure the
agreement between observed and simulated values. The
objectives to be optimized can be the combination of mul-
tiple goodness-of-fit estimators (e.g. relative error, coef-
ficient of determination), multiple variables (e.g. water,
energy, sediment, and nutrients), and multiple sites (e.g.
Yapo et al., 1998; Gupta et al., 1998; van Griensven and
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Bauwens, 2003; Van Liew and Garbrecht, 2003; Vrugt
et al., 2003; Cao et al., 2006; Kim et al., 2006; Reddy
and Kumar, 2007; Engeland et al., 2006; Bekele and
Nicklow, 2007; Rouhani et al., 2007). With the recent
development of distributed hydrological models, which
can spatially simulate hydrological variables, the use of
multi-site observed data to evaluate model performance
is becoming more common.

The Soil and Water Assessment Tool (SWAT) (Arnold
et al., 1998) is a continuous, long-term, distributed-
parameter hydrological model. SWAT has been applied
worldwide for distributed hydrological modelling and
water resources management. For example, the SWAT
model has been incorporated into the U.S. Environmental
Protection Agency (USEPA) Better Assessment Science
Integrating Point & Nonpoint Sources (BASINS) soft-
ware package, and is being applied by the U.S. Depart-
ment of Agriculture (USDA) for the Conservation Effects
Assessment Project (CEAP, 2008; Gassman et al., 2007).
The SWAT model has been widely applied in a wide spec-
trum of areas related to water resources management,
such as assessing land use and climate change (Zhang
et al., 2007; Wang et al., 2008), groundwater withdrawal
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(Lee and Chung, 2007), irrigation (Gosain et al., 2005),
and agricultural conservation (Arabi et al., 2008).

In many SWAT applications, the model was calibrated
using objective functions at a single site (e.g. Zhang
et al., 2009b). The application of observed data from
multiple monitoring sites to calibrate parameter values
of SWAT was discussed and proved to be related to the
appropriate application of SWAT (Santhi et al., 2001; Van
Liew and Garbrecht, 2003; White and Chaubey, 2005;
Cao et al., 2006; Bekele and Nicklow, 2007; Migliaccio
and Chaubey, 2007; Zhang et al., 2008b). For simultane-
ous multi-site automatic calibration of SWAT, two types
of calibration methods are usually implemented. The
first calibration method aggregates the different objec-
tive function values calculated at each monitoring site
into one integrated value, and then use the single objec-
tive optimization algorithms for parameter estimation
(e.g. van Griensven and Bauwens, 2003). Recently, evo-
lutionary multi-objective algorithms are being used to
optimize SWAT using the different objective functions
calculated at multiple sites simultaneously, and finds a
set of multiple Pareto-optimal solutions (e.g. Bekele and
Nicklow, 2007; Migliaccio and Chaubey, 2007; Zhang
et al., 2008b). Zhang et al. (2008b) compared these two
types of methods for SWAT, and showed the advantage
of using evolutionary multi-objective algorithms. Cur-
rently, multi-objective optimization algorithms, including
the Non-dominated Sorted Genetic Algorithm II (NSGA-
II) (Deb et al., 2002) and Strength Pareto Evolution-
ary Algorithm 2 (SPEA2) (Zitzler et al., 2001), have
been applied for calibrating parameters of SWAT (Bekele
and Nicklow, 2007; Remegio et al., 2007; Zhang et al.,
2008b).

When calibrating a distributed hydrologic model, the
complex structures and large number of parameters make
it a challenging problem. Often, a single evolutionary
multi-objective optimization (EMO) method trial may
take several days or even longer (Tang et al., 2006).
Although the speed and capacity of computers have
increased multi-fold in the past several decades, the time
consumed by running hydrological models (especially
complex, physically based, distributed hydrological mod-
els) is still a concern for hydrology practitioners. The
SWAT model is computationally intensive. A single trial
of parameter optimization of SWAT (with 10 000 runs)
can take several days or weeks (Zhang et al., 2009a).
Given limited computational resources and time, select-
ing efficient and reliable EMO algorithms is necessary. To
the best of the authors’ knowledge, the previous studies
involving multi-objective optimization of SWAT exam-
ined only the performance of single-algorithm multi-
objective methods (e.g. SPEA2 or NSGA-II). No com-
parative studies have been conducted to compare the effi-
cacy of different multi-objective algorithms or explore the
applicability of multi-algorithm search methods that com-
bine the strength of multiple multi-objective optimiza-
tion algorithms for calibrating SWAT. Recently, Vrugt
and Robinson (2007) proposed a multi-algorithm, genet-
ically adaptive multi-objective, method (AMALGAM)

which blends the attributes of several available individ-
ual optimization algorithms, including NSGA-II, parti-
cle swarm optimization (PSO) (Kennedy and Eberhart,
2001), adaptive metropolis search (AMS) (Haario et al.,
2001), and differential evolution (DE) (Storn and Price,
1997). They evaluated AMALGAM using several stan-
dard test functions and showed the promise of this multi-
algorithm method to efficiently calibrate complex multi-
objective problems.

There are numerous multi-objective optimization meth-
ods available. Previous studies have compared the effi-
cacy of different EMO algorithms for parameter estima-
tion of computationally intensive hydrological models
and show that different EMO algorithms may exhibit
preferable properties for optimizing different hydrolog-
ical models under different hydrological conditions (e.g.
Kollat and Reed, 2005; Tang et al., 2006). Therefore, the
major purpose of this study is to compare and evalu-
ate the efficacy and reliability of different EMO methods
(single algorithm vs multi-algorithm) for multi-site cali-
bration of SWAT. Based on previous comparative studies
and the current application status of EMO for calibrating
SWAT, we selected two single-algorithm EMO methods
(i.e. SPEA2 and NSGA-II) and one multi-algorithm EMO
method (AMALGAM). In order to generalize the per-
formance of different methods across various situations,
these different methods were applied and compared in
four watersheds with different characteristics. The results
of this study are expected to provide the users of SWAT
and other distributed hydrological model practitioners
with valuable information for selecting EMO methods.

MATERIALS AND METHODS

Study area description

The efficacy of optimization algorithms is dependent
on the characteristics of the objective function response
surface of the hydrological model (Duan et al., 1992),
which is related to the watershed characteristics. In order
to evaluate the general performances of different opti-
mization methods, SWAT was applied to four watersheds
with different climatic and hydrological characteristics.
The four watersheds included the Yellow River Headwa-
ters Watershed (YRHW), Reynolds Creek Experimental
Watershed (RCEW), Little River Experimental Watershed
(LREW), and Mahantango Creek Experimental Water-
shed (MCEW). The locations of the four watersheds are
shown in Figure 1. The basic characteristics of the four
test watersheds are listed in Table I and described below.

YR headwaters watershed. The YRHW is a mountain-
ous river basin, which is located in the northeastern part
of Tibetan plateau in China. This area is the primary
source of water availability for the Yellow River Basin
(Liu, 2004). The area slopes downwards from west to
east, ranging from a combined landform of low moun-
tains and wide valleys with lakes to smooth plateaus

Copyright  2009 John Wiley & Sons, Ltd. Hydrol. Process. (2009)
DOI: 10.1002/hyp



ON THE USE OF AMALGAM FOR MULTI-SITE CALIBRATION OF THE SWAT MODEL

Figure 1. The locations of the four test watersheds and the monitoring stations.

Table I. Major characteristics of the four case study watersheds

Characteristics
Watershed

Size
(km2)

Elevation
(m)

Climate Annual
precipitation

(mm)

Annual
temperature

(°C)

Major land
use types

YRHW 114 345 4217 Dry continental alpine 600 �0Ð7 Grassland
(2600–6266)

MCEW 7 286 Humid temperate 1100 9Ð9 Pasture, forest, and cropland
(215–496)

RCEW 239 1526 Arid steppe 482 7Ð3 Rangeland and forest
(1101–2241)

LREW 334 361 Humid subtropical 1167 14Ð5 Woodland, pasture and cropland
(270–480)

(Wang et al., 2003). The headwaters area has a typi-
cal continental alpine cold and dry climate. The annual
precipitation amount is around 600 mm and the aver-
age annual temperature for the YRHW is near 0 °C. In
winter, the average temperature is below 0 °C for most
of the weather stations, while in summer the average

temperature is above 0 °C. This seasonal temperature
variation makes snowmelt a significant process in this
area (Zhang et al., 2008a). This watershed is character-
ized by gently sloping upland, river bed, and swamp and
wetland. The major types of soils in this area are clay and
loam with relatively low infiltration rates. The major land
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cover in the study area is grassland, which accounts for
approximately 90% of the total area. Other land use/land
cover (forest land, rangeland, agriculture land, and bare
area) account for the remaining 10% of the area. The
observed daily streamflow data were collected at two
monitoring sites (i.e. Maqu and Tangnaihai in Figure 1a)
for multi-site calibration of SWAT.

Mahantango Creek experimental watershed. The
MCEW is a tributary of the Susquehanna River in
Central Pennsylvania. The MCEW is typical of upland
agricultural watersheds within the non-glaciated, folded,
and faulted Appalachian Valley and Ridge Physiographic
Province (Veith et al., 2005). Climate in the region is
temperate and humid, with a long-term average annual
precipitation of 1100 mm. The watershed is characterized
by shallow, fragipan soils in near-stream areas and deep,
well-drained soils in the uplands (Van Liew et al., 2007).
Land use types consist of pasture (38%), forest (34%),
mixed croplands (26%), and farmsteads (2%). WE38 and
FD-36 are two monitoring sites with daily streamflow
data within the MCEW (Figure 1b).

Reynolds Creek experimental watershed. The RCEW
is located near the north end of the Owyhee Mountains
of southwest Idaho. The topography of the watershed
ranges from a broad, flat alluvial valley to steep, rugged
mountain slopes, with a range in elevation from 1101 to
2241 m (Seyfried et al., 2000). Because of orographic
effects, the average annual precipitation ranges from
about 250 mm at the outlet to more than 1100 mm at
the upper end of the watershed. Perennial streamflow is
generated at the highest elevations in the southern part
of Reynolds Creek where deep, late-lying snowpacks
are the source for most water (Seyfried et al., 2000).
Land cover on Reynolds Creek consists of rangeland
and forest communities of sagebrush, greasewood, aspen,
and conifers (94%) and irrigated cropland (6%). Within
the RCEW, there are three monitoring sites (i.e. Salman,
Tolgate, and Outlet in Figure 1c) available for multi-site
observed streamflow data.

Little River experimental watershed. The LREW in
southwest Georgia is the upper 334 km2 of the Little
River and is the subject of long-term hydrological and
water quality research by USDA-ARS and co-operators
(Sheridan, 1997). The region has low topographic relief
and is characterized by broad, flat alluvial floodplains,
river terraces, and gently sloping uplands (Sheridan,
1997). Climate in this region is characterized as humid
subtropical. Precipitation occurs almost exclusively as
rainfall, with an annual mean of 1167 mm. Soils on the
watershed are predominantly sands and sandy loams with
high infiltration rates. Since surface soils are underlain
by shallow, relatively impermeable subsurface horizons,
deep seepage and recharge to regional ground water
systems are impeded (Sheridan, 1997). Land use within
the watershed is approximately 50% woodland, 31% row
crops (primarily peanuts and cotton), 10% pasture, and

2% water. In the LREW, streamflow data was monitored
at five observation stations (i.e. B, F, I, J, and K in
Figure 1d).

SWAT model description

SWAT subdivides a watershed into sub-basins con-
nected by a stream network, and further delineates hydro-
logical response units (HRUs) consisting of unique com-
binations of land cover and soils in each subbasin. It
is assumed that there is no interaction between HRUs,
i.e. the HRUs are non-spatially distributed. HRU delin-
eation can minimize computational costs of simulations
by lumping similar soil and land use areas into a single
unit (Neitsch et al., 2005a). SWAT allows a number of
different physical processes to be simulated in a water-
shed. The hydrological routines within SWAT account
for snow fall and melt, vadose zone processes (i.e. infil-
tration, evaporation, plant uptake, lateral flows, and per-
colation), and ground water flows. The hydrologic cycle
as simulated by SWAT is based on the water balance
equation:

SWt D SW0 C
t∑

iD1

�Rday � Qsurf � Ea � wseep � Qgw�

�1�
where SWt is the final soil water content (mm H2O), SW0

is the initial soil water content on day i (mm H2O), t is
the time (days), Rday is the amount of precipitation on
day i (mm H2O), Qsurf is the amount of surface runoff on
day i (mm H2O), Ea is the amount of evapotranspiration
on day i (mm H2O), wseep is the amount of water entering
the vadose zone from the soil profile on day i (mm
H2O), and Qgw is the amount of return flow on day i
(mm H2O). Surface runoff volume is estimated using a
modified version of the Soil Conservation Service (SCS)
Curve Number (CN) method (Kannan et al., 2008). A
kinematic storage model is used to predict lateral flow,
whereas return flow is simulated by creating a shallow
aquifer (Arnold et al., 1998). The Muskingum method is
used for channel flood routing. Outflow from a channel is
adjusted for transmission losses, evaporation, diversions,
and return flow. van Griensven et al. (2006) conducted
detailed global sensitivity analysis of the parameters in
SWAT, which showed that 10 parameters are sensitive
to the hydrological simulation of SWAT. Van Liew et al.
(2007) tested the suitability of SWAT for the CEAP in
five USDA Agricultural Research Service watersheds.
In the study conducted by Van Liew et al. (2007), 16
parameters, which include the 10 parameters identified
by van Griensven et al. (2006), were adjusted to calibrate
the SWAT model for hydrological simulation. The same
16 parameters identified by Van Liew et al. (2007) were
applied in this study. The general description of the 16
parameters is shown in Table II. The parameters’ ranges
were determined according to van Griensven et al. (2006)
and Neitsch et al. (2005b).
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Multi-objective optimization algorithms

In order to describe multi-objective optimization prob-
lems, a set of symbols are defined in Appendix. For
multi-objective optimization problems, a series of objec-
tive functions need to be taken into account simulta-
neously. The general multi-objective optimization prob-
lem can be defined as: find the parameter solution xŁ
that will optimize the objective function vector F �x 0� D
[f1�x�, f2�x�, . . . , fm�x�]. As there are multiple objec-
tive functions that need to be optimized simultane-
ously, and different objective functions prefer differ-
ent parameter solutions, it is difficult to find a sin-
gle global optimum parameter solution. The Pareto-
optimality concept is defined to evaluate whether a
parameter set is ‘optimal’ or not. An objective func-
tion vector F �x 0� D [f1�x0�, f2�x0�, . . . , fm�x0�] is said
to dominate another objective function vector F �x� D
[f1�x�, f2�x�, . . . , fm�x�] (denoted by F �x 0� � F�x�]�, if
8i 2 f1, 2, . . . mg, fi�x0� ½ fi�x� ^ 9i 2 f1, 2, . . . mg,
fi�x0� > fi�x� (Zitzler and Thiele, 1999). If the objec-
tive function vector F �xŁ� of a point xŁ 2 � is not
dominated by all the other objective function vectors of
the parameter solutions in the feasible parameter space,
then xŁ is taken as a Pareto-optimal parameter solu-
tion. The Pareto-optimal set (PŁ) is defined by the set
of parameter solutions that is not dominated by other
parameter solutions. The objective function vectors cor-
responding to the Pareto-optimal set comprise the Pareto
front (PFŁ). The purpose of multi-objective optimiza-
tion is to search the feasible parameter space and find
those parameter solutions which are Pareto-optimal. The
three EMO methods applied in this study involve several
common procedures: (1) Population size design (i.e. the
number of solutions to be evolved); (2) Fitness assign-
ment, which calculates the fitness value of each solution
in the population; (3) Environmental selection, which
evolves the fitter solutions into next parent population;
(4) Offspring reproduction, which creates new promising
solutions using different evolutionary algorithms. In the
following sections, the procedures of three EMO methods
are introduced briefly.

SPEA2. SPEA2, developed by Zitzler et al. (2001),
is one EMO method that has been successfully applied
in hydrological model optimization (e.g. Tang et al.,
2006; Zhang et al., 2008b). SPEA2 requires users to
initialize a population of parameter solutions (Pt) and
an empty external archive (Pt), which are evolved
using fitness assignment, environmental selection, and
offspring production operations. In the fitness assignment
operator, three basic procedures are implemented. First,
each individual in Pt and Pt is assigned to a strength
value S�i� representing the number of solutions that are
dominated by xi. Second, raw fitness R�i� is calculated
as the sum of the strength value of solutions who
dominate xi. Finally, in case many parameter solutions
have the same raw fitness when most chromosomes
do not dominate each other, the final fitness F�i� is

computed through adjusting the raw fitness using a kth
nearest neighbour method, which defines the density of a
parameter solution as a function of its distance to the kth
nearest neighbour in the objective space (Zitzler et al.,
2001). The environmental selection operator is used to
copy all Pareto-optimal chromosomes in Pt and Pt to
PtC1. If the size of PtC1 exceeds N, then PtC1 is reduced
by means of truncating the non-dominated chromosomes
with less fitness; otherwise, if the size of PtC1 is less
than N, then PtC1 is filled with the best dominated
chromosomes in Pt and Pt. In the offspring reproduction
operator, the genetic algorithms (GAs) (Goldberg, 1989)
are used to evolve the parameter solutions in PtC1

and reproduce promising new candidates for the next
generation PtC1. The fitness assignment, environmental
selection, and offspring production are repeated until
maximum number of model runs is reached. In this
study, the binary tournament selection, simulated binary
crossover, and polynomial mutation were used within the
GA framework.

NSGA-II. NSGA-II is an elitist multi-objective GA
developed by Deb et al. (2002). NSGA-II requires users
to initialize a population of parameter solutions and
an external archive, which are evolved using several
operators, including fast non-domination sorting (FNS),
crowded distance calculation, elitist selection, and off-
spring reproduction operations t. The FNS is an efficient
operator that assigns ranks to the parameter solutions in
Pt and Pt. The individuals that are not dominated by other
individuals are put in the first front FT1, and are assigned
rank 1. The individuals that are not dominated by other
individuals except those in FT1 are put in the second
front FT2, and assigned rank 2. Similarly, all individuals
are assigned to a specific front and rank number. After
the FNS operation, many individuals are usually located
in the same front and have the same rank. NSGA-II uses
crowding distance to discriminate the individuals with
the same front order. The crowding distance is calcu-
lated as the average distance of the two individuals on
either side of individual i along each of the objectives as
an estimate of the size of the largest cuboid enclosing the
point i without including any other point in the popula-
tion. The individuals with higher crowding distances help
preserve the diversity of the population and ensure that
the NSGA-II will find solutions along the full extent of
the Pareto front. The chromosomes with lower rank and
larger crowding distance are selected into PtC1, which
will be evolved using GA to populate PtC1. The settings
of GA operators in NSGA-II are similar to those used in
SPEA2.

AMALGAM. AMALGAM adaptively and simultane-
ously employs multiple EMO algorithms to ensure a fast,
reliable, and computationally efficient solution to multi-
objective optimization problems (Vrugt and Robinson,
2007). AMALGAM starts with a random initial popu-
lation Pt of size of N. For each individual in Pt, the
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FNS operator is used to assign a rank. A offspring pop-
ulation Pt of size N is subsequently created by imple-
menting each candidate algorithms within AMALGAM
to generate a pre-specified number of offspring points,
N D fN1

t , N2
t , . . . , Nk

t g, from Pt. By using the FNS oper-
ator, the best N solutions within Rt D Pt [ Pt are selected
into PtC1, which is evolved repeatedly by the multi-
method search and adaptive offspring creation method
until a maximum number of model runs. The two key pro-
cedures of AMALGAM are simultaneous multi-method
search and self-adaptive offspring creation. In this study,
four candidate EMO algorithms, including NSGA-II,
PSO, DE, and AMS, were incorporated into AMALGAM
following Vrugt and Robinson (2007). As to the self-
adaptive offspring creation of AMALGAM, the number
of offspring points generated by each candidate algo-
rithms, fN1

t , N2
t , . . . , Nk

t g, is updated according to Ni
t D

N ð �Oi
t/Ni

t�1�/
∑k

nD1�On
t /Nn

t�1�, where Oi
t/Ni

t�1 is the
ratio of the number of offspring points an algorithm con-
tributes to the new population, Oi

t, and the corresponding
number that the algorithm created in the previous gen-
eration (Nl

t�1) (Vrugt and Robinson, 2007). For the first
generation, N1

0 D N2
0 D . . . D Nk

0 D N/k. And the mini-
mum value of Nk

t is 5.

Optimization test cases design

Optimization objective functions. The Nash–Sutcliffe
efficiency (NSE) values for streamflow simulation at the
monitoring stations within each test watershed were the
objectives to be optimized simultaneously. The formula
to calculate NSE is (Nash and Sutcliffe, 1970):

NSE D 1Ð0 �
∑q

iD1
�obsi � simi�

2

∑q

iD1
�obsi � obs�2

�2�

where simi is the model-simulated value at time step i,
obsi is the observed data at time step i, obs the mean
for the entire time period of the evaluation, and q is the
total number of pairs of simulated and observed data.
NSE indicates how well the plot of the observed versus
the simulated values fits the 1 : 1 line, and ranges from
�1 to 1. For the four test watersheds, the objective
function vectors that need to be optimized are described
as follows.

FYRHW D ff1 D NSEMaqu0f2

D NSETangnaihaig �3�

FMCEW D ff1 D NSEFD360f2

D NSEWE38g �4�

FRCEW D ff1 D NSESalmom0f2

D NSETogate0f2 D NSEOutletg �5�

FLREW D ff1 D NSEB0f2

D NSEF0f3 D NSEI0f4

D NSEJ0f5 D NSEKg �6�

Performance evaluation of different EMO algorithms.
Generally, it is very difficult to find an analytical expres-
sion of the line or surface that contains all the Pareto-
optimal parameter solutions. The normal procedure to
generate the Pareto front is to compute the feasible
solutions x and their corresponding F�x�. When there
are a sufficient number of feasible points, then it is
assumed that the non-dominated points are approximat-
ing the Pareto front (Coello Coello et al., 2004), which
is referred to as reference set. In this study, the refer-
ence set for each test case was obtained by collecting the
non-dominated points obtained by all the methods with
multiple trials. Compared with this reference set, three
performance metrics were calculated to evaluate the qual-
ity of the non-dominated parameter solutions (referred
to as approximation set) obtained by each method. The
three metrics applied in this study are introduced as
follows.

Success Identification (SI): The SI metric is calcu-
lated as:

SI D
∑n

iD1
Si

n
�7�

where n is the number of parameter solutions in the
reference set. Si D 1 if the parameter solution i in the
reference set is identified by the approximation set, and
Si D 0 otherwise. A value of

∑n
iD1 Si D n indicates that

all the members in the reference are found. In this study,
if the difference between a member in the reference set
and any member in the approximation set is less than
0Ð001, it is assumed that a member in the reference set
is successfully counted. This metric is very similar to
the Success Counting metric used by Sierra and Coello
(2005).

e-indicator: this metric was proposed by Zitzler et al.
(2003) to measure how well the algorithms converge
to the reference set. The ε-indicator is calculated as
the smallest distance that an approximation set needs
to be transformed in order to dominate the reference
set. The individuals in the transformed approximation
set are called reference points. Figure 2a illustrates
the computation of the ε-indicator for a two-objective
case.

Hypervolume (HP): this metric was proposed by Zit-
zler and Thiele (1999). The HP metric is represented by
the difference between the volume of the objective space
dominated by the reference set and the approximation
set which measures how well the approximation set per-
forms in identifying solutions along the full extent of
the Pareto surface (Tang et al., 2006). In Figure 2b, a
two-objective case was used to illustrate the calculation
of HP.

When applying the above three metrics to evaluate the
performance of different algorithms, larger SI values and
smaller ε-indicator and HP values are preferred.

Test cases design. The control parameters of each EMO
method were selected on the basis of sets in previ-
ous studies (Kollat and Reed, 2005; Tang et al., 2006;
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Approximation set
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Figure 2. (a) Illustration of the calculation of ε-indicator metric using a two-objective example. (b) Illustration of the calculation of the hypervolume
metric using a two-objective example. The shaded area with dashed slash line represents the hypervolume value. Adapted from Tang et al. (2006)

Table II. Parameters for calibration in the SWAT model

Code Parameter Description Range

1 CN2 Curve number š20%
2 ESCO Soil evaporation compensation factor 0–1
3 SOL AWC Available soil water capacity š20%
4 GW REVAP Ground water re-evaporation coefficient 0Ð02–0Ð2
5 REVAPMN Threshold depth of water in the shallow aquifer for re-evaporation to occur (mm) 0–500
6 GWQMN Threshold depth of water in the shallow aquifer required for return flow to occur (mm) 0–5000
7 GW DELAY Groundwater delay (days) 0–50
8 ALPHA BF Base flow recession constant 0–1
9 RCHRG DP Deep aquifer percolation fraction 0–1
10 CH K2 Effective hydraulic conductivity in main channel alluvium (mm/h) 0Ð01–150
11 TIMP Snow pack temperature lag factor 0–1
12 SURLAG Surface runoff lag coefficient (day) 0–10
13 SFTMP Snow melt base temperature (°C) 0–5
14 SMTMP Snowfall temperature (°C) 0–5
15 SMFMX Maximum snowmelt factor for June 21 (mm H2O/°C�1 day�1) 0–10
16 SMFMN Minimum snowmelt factor for December 21 (mm H2O/°C�1 day�1) 0–10

Table III. Major parameters settings of the three EMO methods

Method
Settings

SPEA2 NSGA-II AMALGAMa

Population 100 and 250 100 and 250 100
Termination criterion 10 000 runs 10 000 runs 10 000 runs
Probability of crossover 1Ð0 1Ð0 1Ð0
Crossover distribution Index 15 15 15
Probability of mutation 1/D 1/D 1/D
Mutation distribution index 20 20 20
Variable representation Real Real Real

a The settings of other algorithms (i.e. PSO, AMS, and DE) within AMALGAM follow Vrugt and Robinson (2007).

Vrugt and Robinson, 2007). Table III shows the major
parameter settings of different methods, among which
the population size is an important factor that deter-
mines the performance of different algorithms. In this
study, the effect of population size on the performance of
NSGA-II and SPEA2 was further examined with one rela-
tively small population size (100) and one relatively large
population size (250) following Tang et al. (2006). For
AMALGAM, the population size effect was not further

explored. Hence, there were a total of five optimization
cases for each test watershed.

The EMO methods applied in this study involve ran-
dom sampling of the parameter values, so the results
obtained by one trial are stochastic and cannot be used
to accurately evaluate the algorithm’s performance. The
average behaviour of multiple trials of each method
was used to compare the performance of different meth-
ods. This is a popular performance comparison method
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reported in the literature (Ali et al., 2005). Ideally, it
is expected that one method can consistently outper-
form the other methods in terms of all three metrics
introduced above. The three EMO methods were run 10
times to obtain SI, ε-indicator, and hypervolume values
as indicator of their performance. The multi-objective
optimization problems require finding multiple solutions
that approximate the Pareto front. With a single trial of
an EMO method, it is usually difficult to find a good
approximation of the Pareto front. Therefore, we tried
to evaluate the performance of each algorithm from two
aspects: (1) the performance of the non-dominated set
obtained through combining the results of multiple tri-
als of one method, which is referred to as combined
performance; and (2) the average performance of the non-
dominated sets found by multiple trials of one method,
which is represented as average performance.

In this study, the SWAT model was set up for daily
flow simulation at the monitoring stations within each
watershed. The calibration periods consisted of 10 years
(1976–1985) in the YRHW, 4 years (1995–1998) in the
MCEW, 3 years (1995–1997) in the LREW, and 4 years
(1966–1969) in the RCEW. On a computer with Pentium
IV 3 GHZ and 1 GB RAM, the time consumed by one
SWAT model run was 30 s for the YRHW, 13 s for the
MCEW, 44 s for LREW, and 42 s for RCEW. As time
and computer resources are limited, it was not possible to
run the SWAT model for a very long simulation period or
for an unlimited number of model evaluations. The three
algorithms were compared on the basis of the average
performance of 10 trials within a limited and affordable
number of model evaluations. Considering the time and
computer resources available, the maximum number of
model evaluations was limited to 10 000 model runs for
the four test watersheds. The time consumed by one trial
was 84 h in the YRHW, 37 h in the MCEW, 122 h in
LREW, and 117 h in RCEW.

RESULTS AND DISCUSSION
Evaluation of different algorithms for the two-objective
case in the YRHW

The best known reference set (Figure 3) for the two-
objective test case in the YRHW was collected by
running the three multi-objective optimization algorithms
in multiple trials. This reference set was used to evaluate
the performance of different multi-objective optimization
methods. It was found that only SPEA2 and AMALGAM
contributed to the reference set. SPEA2-100, SPEA2-250,
and AMALGAM contributed 3, 1, and 6, respectively, of
a total of 10 members in the reference set.

The combined performance of each method was eval-
uated by collecting the combined approximation sets
for each method (Figure 4). Table IV lists the evalua-
tion coefficients for each combined approximation set.
AMALGAM consistently performed the best among the
three methods. NSGA-II-250 performed the least.

The average performance of each algorithm was eval-
uated using the average evaluation coefficients obtained
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Figure 3. The reference set for the two-objective case in the YRHW
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Figure 4. The approximation sets found by different algorithms through
multiple trials in the YRHW

across 10 trials (Table IV). It was found that AMALGAM
successfully identified more members in the reference set
than the other methods, while SPEA2-100 performed best
in terms of ε-indicator and HP values. It is worth noting
that the average evaluation coefficient values are much
less than the combined performance for each algorithm.
For example, the HP value obtained by combining multi-
ple trials of AMALGAM is 0Ð000027, while the average
HP value (0Ð001) was much larger. The SI value obtained
by combining multiple trials of AMALGAM is 60%,
which is about 10 times its average SI value of 6Ð62%.
The substantial difference between the combined perfor-
mance and average performance of each method empha-
sizes the inadequacy of a single trial of EMO methods
tested in this case. In order to obtain good approximation
for the reference set, multiple trials are required.

Evaluation of different algorithms for the two-objective
case in the MCEW

For the two-objective test case in the MCEW, Figure 5
shows the reference set obtained by running differ-
ent algorithms with multiple trials. Only SPEA2 and
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Table IV. Average and combined performance of different algorithms for the two-objective test case in theYRHW

Performance Average performance Combined performance
metrics
Method ε-Indicator SI HP ε-Indicator SI HP

NSGA-II-100 0Ð015 0Ð00% 0Ð0009 0Ð006 0Ð00% 0Ð0003
(0Ð007) (0Ð00%) (0Ð0005)

NSGA-II-250 0Ð015 0Ð00% 0Ð0009 0Ð01 0Ð00% 0Ð0005
(0Ð005) (0Ð00%) (0Ð0003)

SPEA2-100 0Ð011 4Ð09% 0Ð0006 0Ð004 30% 0Ð0001
(0Ð003) (12Ð28%) (0Ð0003)

SPEA2-250 0Ð013 1Ð05% 0Ð0007 0Ð004 10% 0Ð0001
(0Ð005) (3Ð33%) (0Ð0003)

AMALGAM 0Ð017 6Ð62% 0Ð001 0Ð003 60% 2.7E-05
(0Ð009) (12Ð15%) (0Ð0006)
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Figure 5. The reference set for the two-objective case in the MCEW

AMALGAM contributed to the reference set. SPEA2-
100, SPEA2-250, and AMALGAM contributed 12%,
24%, and 64% of the reference set, respectively.

The combined approximation sets found by each of the
three methods with multiple trials are shown in Figure 6.
Visually, the approximation set found by AMALGAM
dominates those found by other methods. The evalua-
tion coefficients listed in Table V confirm the superior
performance of AMALGAM, which exhibited smaller
ε-indicator and HP values and larger SI values. Fur-
ther analysis of the evaluation coefficients of average
performance of each method shows that AMALGAM
still outperforms the other two single-algorithm methods
(Table V).

Evaluation of different algorithms for the three-objective
case in RCEW

The RCEW test case has three monitoring sites to cali-
brate SWAT. Three two-dimensional graphics are used to
represent the reference set (Figure 7). Among the total of
321 members in the reference set, NSGA-II-100, NSGA-
II-250, SPEA2-100, SPEA2-250, and AMALGAM con-
tributed 17, 18, 32, 11, and 243, respectively. The com-
bined approximation set of each method is shown in
Figure 8. The evaluation coefficients of the combined
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Figure 6. The approximation sets found by different algorithms through
multiple trials in the MCEW

performances of each method show that AMALGAM
obtained the largest SI value while the lowest ε-indicator
and HP values. Similarly, the evaluation coefficients of
average performance of the different methods (Table VI)
also show the superior performance of AMALGAM over
the other methods.

Evaluation of different algorithms for the five-objective
case in LREW

In the LREW, there are five objectives that need to
be optimized simultaneously. It is difficult to plot the
results in five-dimensional space. Therefore, the figures
illustrating the reference set and approximation sets found
by different algorithms were not plotted. As it is very
time consuming to calculate the HP metric for this five-
objective case and HP metric is highly correlated to the
ε-indicator, only the ε-indicator and SI metrics were com-
puted to evaluate the performance of different algorithms
in the LREW. A total of 795 parameter solutions were
identified in the reference set. NSGA-II-100, NSGA-II-
250, SPEA2-100, SPEA2-250, and AMALGAM found
124, 13, 2, 98, 136, and 422 non-dominated parame-
ter solutions, respectively. Further analysis shows that
AMALGAM exhibited better ε-indicator and SI values

Copyright  2009 John Wiley & Sons, Ltd. Hydrol. Process. (2009)
DOI: 10.1002/hyp



X. ZHANG, R. SRINIVASAN AND M. V. LIEW

Table V. Average and combined performance of different algorithms for the two-objective test case in the MCEW

Performance Average performance Combined performance
metrics
Method ε-indicator SI HP ε-indicator SI HP

NSGA-II-100 0Ð0159 0Ð00% 0Ð0012 0Ð006 0Ð00% 0Ð000513
(0Ð0063) (0Ð00%) (0Ð00057)

NSGA-II-250 0Ð0140 0Ð00% 0Ð0011 0Ð008 0Ð00% 0Ð000583
(0Ð0037) (0Ð00%) (0Ð00034)

SPEA2-100 0Ð0170 2Ð00% 0Ð0013 0Ð006 20Ð00% 0Ð000302
(0Ð0093) (3Ð27%) (0Ð00082)

SPEA2-250 0Ð0112 3Ð00% 0Ð00083 0Ð003 30Ð00% 0Ð000167
0Ð005007 (8Ð81%) (0Ð00044)

AMALGAM 0Ð0072 8Ð60% 0Ð00057 0Ð002 80Ð00% 2·6E-05
(0Ð0015) (20Ð00%) (0Ð00028)

The values in bold denote the best performance metric.

than the other methods for both combined performance
and average performance assessment (Table VII).

Discussion

The results discussed above, to some extent, agree
with the popular ‘no free lunch (NFL) theorem’ that
‘for any algorithm, any elevated performance over one
class of problems is offset by performance over another
class’ (Wolpert and Macready, 1997). For the two single-
algorithm methods (i.e. SPEA2 and NSGA-II), neither of
them can consistently outperform the other. For example,
NSGA-II-250 outperformed SPEA2-100 for the MCEW,
while this is reversed in LREW. The advantage of
the multi-method search approach (Vrugt and Robin-
son, 2007; Vrugt et al., 2009) employed by AMALGAM
is clearly demonstrated. AMALGAM obtained the best
average and combined performance in MCEW, RCEW,
and LREW. For the YRHW, AMALGAM performed less
than SPEA2 in terms of ε-indicator and HP for aver-
age performance assessment, but it still performed best
with respective to combined performance. The optimum
single-objective values are valuable to modellers when
they have preference to one specific objective. AMAL-
GAM found most of the optimal single-objective values
in the reference sets in the four test watersheds. For exam-
ple, AMALGAM obtained best values for four out of the
five objectives in LREW, two out of the three objectives
in RCEW, and one out of the two objectives in MCEW. In
YRHW, SPEA2 found the extreme ends of the two objec-
tives. The watershed characteristics of YRHW (Table I)
are quite different from those of the other three test water-
sheds, which means that the YRHW is a special case of
applications of SWAT. Overall, AMALGAM proved to
be a good choice for multi-objective calibration of SWAT.
But, it is worth noting that none of the multi-objective
methods can consistently find the extreme end of each
single objective. If the modellers emphasize one of the
multiple objectives, single-objective optimization meth-
ods may provide useful information on the best value of
each single objective (Zhang et al., 2008b).

AMALGAM provides a flexible framework for simul-
taneously implementing different EMO algorithms to

solve multi-objective optimization problems. The essence
of AMALGAM is to combine the strength of different
EMO algorithms and dynamically change the contribu-
tions of these EMO algorithms to solve the problem on
the basis of their performance history. In order to provide
insights into how different algorithms alternate in their
importance during the optimization process, the numbers
of individuals produced by different algorithms are plot-
ted against the iterations for one test trial of AMALGAM
in MCEW in Figure 9. The relative contribution by each
algorithm within AMALGAM is calculated by dividing
the number of individuals it produced (averaged over
the 10 trials) by the total number of model runs in one
trial. The percentage of individuals contributed by each
algorithm within AMALGAM is shown in Table VIII.
The relative contribution of each algorithm varied in
different watersheds, which indicates the adaptability of
AMALGAM to change preference to individual search
algorithms for different problems. Overall, NSGA-II con-
tributed about half of the SWAT model runs during the
optimization process. The contributions of PSO, DE, and
AMS ranked the second, third, and fourth, respectively.
Currently, the GA-based EMO algorithm incorporated
in AMALGAM is NSGA-II. The test results obtained
in this study (Tables IV–VII) indicate the advantage of
SPEA2 over NSGA-II for calibrating SWAT. In gen-
eral, SPEA2 obtained better performance metrics for most
cases and find more non-dominated parameter solutions
than NSGA-II. Therefore, incorporating SPEA2 into the
AMALGAM framework holds the promise to be further
exploited.

We also need to pay attention to the difference
between the average evaluation coefficient values and
those obtained by combining multiple trial results. For
all three EMO methods, the average SI values are about
1/10 of those obtained through multiple trials in all four
test watersheds. The different ε-indicator and HP values
further confirm this difference. Taking AMALGAM as an
example, in the four test watersheds, the ε-indicator val-
ues obtained through multiple trials are less than one-third
of those average ε-indicator values, and HP values are
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Figure 7. The reference set for the three-objective case in the RCEW

less than one-sixth. These results indicate the risk of run-
ning one EMO method only once to estimate the trade-off
between the multiple objective functions. Multiple trails
and more model runs may be required to obtain close
approximation of the Pareto front. For practical imple-
mentation of AMALGAM, the modellers need to choose
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Figure 8. The approximation sets found by different algorithms through
multiple trials in the RCEW

between multiple trials with a small number of runs and a
single trial with a large number of runs. Although 10 trials
with 10 000 runs and 1 trial with 100 000 runs cost similar
amount of time, the results obtained by these two schemes
may be different. For the four test watersheds, we
examined the performance of AMALGAM under the one
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Table VI. Average and combined performance of different algorithms for the three-objective test case in the RCEW

Performance Average performance Combined performance
metrics
Method ε-Indicator SI HP ε-Indicator SI HP

NSGA-II-100 0Ð118 0Ð34% 0Ð121 0Ð054 3Ð43% 0Ð036
(0Ð04774) (0Ð98%) (0Ð051)

NSGA-II-250 0Ð11 0Ð56% 0Ð103 0Ð062 5Ð61% 0Ð05
(0Ð019) (1Ð77%) (0Ð017)

SPEA2-100 0Ð116 1Ð00% 0Ð122 0Ð057 9Ð97% 0Ð02
(0Ð047) (2Ð12%) (0Ð059)

SPEA2-250 0Ð102 0Ð66% 0Ð099 0Ð043 5Ð30% 0Ð023
(0Ð0339) (1Ð64%) (0Ð038)

AMALGAM 0Ð066 7Ð57% 0Ð06 0Ð015 75Ð70% 0Ð011
(0Ð0242) (8Ð31%) (0Ð024)

Table VII. Average and combined performance of different algo-
rithms for the five-objective test case in the LREW

Performance Average performance Combined performance
metrics
Method ε-Indicator SI ε-Indicator SI

NSGA-II-100 0Ð076 0Ð16% 0Ð053 1Ð64%
(0Ð014) (0Ð26%)

NSGA-II-2500 (0Ð085) 0Ð03% 0Ð058 0Ð25%
(0Ð008) (0Ð06%)

SPEA2-100 0Ð066 2Ð24% 0Ð045 12Ð34%
(0Ð014) (1Ð97%)

SPEA2-250 0Ð072 2Ð71% 0Ð047 17Ð13%
(0Ð015) (3Ð21%)

AMALGAM 0Ð055 5Ð90% 0Ð045 53Ð15%
(0Ð0047) (5Ð42%)
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Figure 9. The number of individuals produced by each algorithm in
AMALGAM against the iterations for one test trial in MCEW

single trial with 100 000 runs scheme. In order to compare
the performance of AMALGAM with these two schemes,
we calculated the non-dominated sets found by each of
these two schemes. The performance metrics (Table IX)
of each non-dominated set were computed with respect
to the reference set derived from these two non-
dominated sets. The AMALGAM(10 ð 10 000) scheme

Table VIII. Percentage of SWAT runs contributed by each algo-
rithm in AMALGAM for the four test watersheds

Method
Watershed

NSGA-II
(%)

AMS
(%)

PSO
(%)

DE
(%)

YRHW 52 10 28 9
LREW 45 14 27 13
RCEW 47 5 26 21
MCEW 46 5 38 10

outperformed the AMALGAM(1 ð 100 000) scheme in
three watersheds (i.e. MCEW, RCEW, and LREW),
while AMALGAM(1 ð 100 000) scheme performed bet-
ter in YRHW. In general, the multiple trials with a rel-
atively small number of model runs scheme is preferred
for implementing AMALGAM.

Previous applications of SWAT have reported that the
time consumed by running SWAT once varies from sec-
onds to hours. Implementing EMO methods for multi-
objective parameter estimation of SWAT requires a large
number of SWAT model runs, which is very time con-
suming. Reducing the time consumed by running SWAT
by using advanced computational techniques deserves
further research. Zhang et al. (2009a) compared the arti-
ficial neural network (ANN) and support vector machine
(SVM) as surrogate of SWAT, and showed the poten-
tial of using SVM to save time consumed by calibra-
tion and uncertainty of SWAT. Combination of EMO
methods and SVM has the potential to reduce compu-
tational burden of calibrating SWAT. Parallel computing
techniques have also proved to be promising for effi-
cient calibration of computationally intensive models.
For example, Vrugt et al. (2006) reported that paral-
lel implementation of the Shuffled Complex Evolution
Metropolis (SCEM-UA) global optimization algorithm
can substantially speed up the computational processes
(closely approximates linear speed-up). In Vrugt et al.
(2006, 2008) showed schemes of extending different
optimization algorithms to parallel implementation ver-
sion using Message Passing Interface (MPI), a mecha-
nism for a specification of passing instructions between
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Table IX. Performance of AMALGAM between two optimization schemes

Performance metrics Watershed/optimization scheme ε-indicator SI (%) HP

YRHW AMALGAM(10 ð 10 000)a 0Ð004 11Ð11 3Ð5E–05
AMALGAM(1 ð 100 000)b 0Ð001 88Ð89 1E–06

MCEW AMALGAM(10 ð 10 000) 0Ð002 88Ð64 2Ð2E–05
AMALGAM(1 ð 100 000) 0Ð003 29Ð55 0Ð0001

RCEW AMALGAM(10 ð 10 000) 0Ð017 81Ð39 0Ð0031
AMALGAM(1 ð 100 000) 0Ð042 18Ð61 0Ð0038

LREW AMALGAM(10 ð 10 000) 0Ð011 99 —
AMALGAM(1 ð 100 000) 0Ð088 1 —

a AMALGAM(10 ð 10 000) represents the optimization scheme of 10 trials with 10 000 model runs.
b AMALGAM(1 ð 100 000) represents the optimization scheme of one trial with 100 000 model runs.

different computational resources. Modification of opti-
mization algorithms source code to implement on a distri-
buted computer system is minor using MPI (Vrugt et al.,
2006). The major limitation of implementing parallel
computation is the availability of distributed computer
systems. Given the enormous time consumed by calibra-
tion of SWAT, it is important to try different advanced
computational techniques to improve the efficiency of
EMO methods in the future.

In addition to the improve the efficiency and relia-
bility of multi-objective optimization methods to find
the Pareto-optimal solutions that are defined in objective
space, their ability to explore the parameter space and
provide a wide range of parameter sets for the modellers
should be emphasized. Schaefli et al. (2004) showed that
different parameter values can produce very similar per-
formance metrics, but these different parameter values
exhibited very different behaviour in projecting climate
change impact on future water resources. In this case,
using expert knowledge to select one or several appropri-
ate parameter sets is necessary to reduce the uncertainty
associated with parameter. Zhang et al. (2009c) also dis-
cussed the importance of considering the prior knowledge
of parameter uncertainty in hydrological model selection.
Finding a wide range of parameter sets with satisfactory
performance metrics is the basis for appropriate param-
eter selection. AMALGAM cannot explicitly consider
the differences between parameter values into the opti-
mization process. Incorporating multi-mode search opera-
tors into the multi-objective optimization algorithms (e.g.
Leyland et al., 2001; Schaefli et al., 2004) to improve
their ability to explore parameter space deserves further
research.

CONCLUSIONS

In this study, we compared the efficacy of two single-
algorithm EMO methods (i.e. SPEA2 and NSGA-II) and
a multi-algorithm, genetically adaptive multi-objective
method (AMALGAM), for multi-site calibration of the
SWAT model in four test watersheds with different char-
acteristics. The results obtained in this study show that,
without tuning population size, AMALGAM produced
superior or competitive optimization results compared to

other single-algorithm methods for most test cases. More
importantly, the multi-method search framework within
AMALGAM allows flexible incorporation of different
algorithms. Compared with NSGA-II which has been
incorporated into AMALGAM, our test results show that
SPEA2 can provide better results for calibrating SWAT.
It is promising to include SPEA2 into AMALGAM in
the future. The difference between the average evalua-
tion coefficient values and those obtained using multiple
trials should be noted. Further analysis indicates that
AMALGAM exhibited different performance between
two implementation schemes (10 trials with 10 000 model
runs vs 1 trial with 100 000 model runs). For practical
use of AMALGAM, it is suggested to implement this
method in multiple trials with a relatively small number
of model runs rather than run it once with long itera-
tions. In the future, evaluating and improving the ability
of AMALGAM to explore the parameter space to pro-
vide a wide range of parameter sets for model selection
deserve further research.
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APPENDIX

x is the vector of hydrological parameters in this study;
xi D �xi1, xi2, . . . , xiD� is the ith parameter solution in the

population;
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D is the number of optimized parameters;
xiD is the dth dimension of the ith parameter solution;
� is the feasible space of parameters;
F �x� D [f1�x�, f2�x�, . . . , fm�x�],is an objective func-

tion vector that contains multiple individual objective
functions that need to be optimized simultaneously;

m is the number of objective functions;
fi�x�, also denoted fj, is the jth objective function;
PŁ is Pareto-optimal set;
PFŁ is the Pareto front;
FTl is the lth front that is defined in NSGA-II;
T is the maximum number of generations;
t is the current generation number;
Pt is the population of parameter solutions at generation

number t;
N is the number of parameter solutions in a population;
k is the number of candidate EMO algorithms in AMAL-

GAM;
Nk

t is the number of offspring assigned to the kth model
at tth generation;

Pt is the external archive at generation t which is used to
store the parameter solutions with high fitness values;

N is the external archive size;
A is the Pareto optimal set.
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