Using SWAT to understand the eco-hydrological response to droughts of a dry Mediterranean agro-forested catchment, southern Portugal

Juliana Santos, Júlio Lima, Madalena Moreira, Elsa Sampaio, João Pedro Nunes

Centre for Environmental and Marine Studies
University of Aveiro (Portugal)

Institute of Mediterranean Agricultural and Environmental Sciences
University of Évora (Portugal)
Climate change is expected to increase aridity in the Mediterranean rim of Europe, leading to concerns on consequences for water resources availability in a region already under water stress.

- Understanding how streamflow availability and vegetation growth have responded to past droughts.
- How this might reflect future water availability conditions.
GUADALUPE:
Agro-forested catchment
Area: 446 ha
Elevation: 260 to 380 meters
Mediterranean inland climate with hot and dry summers and mild winters:
 Mean annual precipitation (1973-2012): 533 mm
 Mean annual temperature: 15.5°C

Representative of the dry regions of southern Portugal
The catchment is representative of the streamflow sources for a network of reservoirs in the Évora region which provide water for irrigation and hydroelectric power generation.

Study Site: Guadalupe

Data Collection:

Discharge:

<table>
<thead>
<tr>
<th>Date</th>
<th>Flow (stream flow) mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set/12</td>
<td></td>
</tr>
<tr>
<td>Out/12</td>
<td></td>
</tr>
<tr>
<td>Nov/12</td>
<td></td>
</tr>
<tr>
<td>Dez/12</td>
<td></td>
</tr>
<tr>
<td>Jan/13</td>
<td></td>
</tr>
<tr>
<td>Feb/13</td>
<td></td>
</tr>
<tr>
<td>Mar/13</td>
<td></td>
</tr>
</tbody>
</table>

Soil Moisture:

<table>
<thead>
<tr>
<th>Date</th>
<th>SWC_mm</th>
<th>PP_mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mai/11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set/11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan/12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mai/12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set/12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan/13</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Study Site: Guadalupe

Data Collection:

Climate Data:
- Rainfall
- Wind Speed
- Solar Radiation
- Temperature
- Relative Humidity

Total Annual Rainfall (mm)

Mean = 533 mm
Study Site: Guadalupe

Data Collection:

2 Eddy covariance flux towers:
Carbo Euro Flux
1999-2008

Precipitation (mm) PET_mm/d EET_mm/d_Mitra2

Evapotranspiration:

- Soil Moisture
- Plant Type
- Stage of the plant development
- Weather conditions
• HRU definition

10 subbasins

107 HRUs

Classes of Slope
- Green: 0-10%
- Red: > 10%

Land Uses
- FRSS
- OLVG
- URM D
- WCRL
- WPSR
- WPST

Soil Type
- SROASBL
- SROAPmn
- SROAPMG
- SROAPGD
- SROAPG
SWAT

- Parameterization

Legend

- SROASBL: Coluvisols
- SROAPmn: Brown Mediterranean Soils - Schists
- SROAPMG: Brown Mediterranean Soils - Plutonic Rocks
- SROAPGD: Non-Humic Litholic Soils - Granite (shallow)
- SROAPG: Non-Humic Litholic Soils - Granite

LANDUSES

- Cork/holm oak (>50%) + pasture: 52.9%
- Olive groves: 2.6%
- Urban: 0.3%
- Annual Crops: 10.7%
- Cork/holm oak (30-50%) + pasture: 28.1%
- Pasture: 5.4%
Observed Data:

MITRA 2 - PASTURE

SWAT
Observed Data:

PASTURE

Figure: Pasture production curve in rainfed Mediterranean conditions

Management Operations - PASTURE

<table>
<thead>
<tr>
<th>Year</th>
<th>OP_NUM</th>
<th>Operation</th>
<th>Crop</th>
<th>Heat Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Plant/begin growing season</td>
<td>WPST</td>
<td>0.07</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>Auto fertilization initialization</td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>Grazing operation</td>
<td></td>
<td>0.4</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>Harvest and kill operation</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

LAI sim (m²/m²) | LAI obs (m²/m²)
Preliminary Results:

PASTURE - Daily

- LAI sim (m²/m²)
- LAI obs (m²/m²)
- EET obs PT-Mi2 (mm)
- EET sim (mm)

Dates:
- Abr/04, Jun/04, Aug/04, Out/04, Dez/04, Feb/05, Abr/05, Jun/05, Aug/05, Out/05, Dez/05, Feb/06, Abr/06, Jun/06, Aug/06, Out/06, Dez/06, Feb/07, Abr/07, Jun/07, Aug/07, Out/07, Dez/07, Feb/08, Abr/08, Jun/08, Jul/08, Set/08, Nov/08, Jan/09
Preliminary Results:

PASTURE - monthly

- **R² = 0.59**
- NSE = 0.41
- PBIAS = 11.1

<table>
<thead>
<tr>
<th>Year</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004/05</td>
<td>0.85</td>
</tr>
<tr>
<td>2005/06</td>
<td>0.66</td>
</tr>
<tr>
<td>2006/07</td>
<td>0.36</td>
</tr>
<tr>
<td>2007/08</td>
<td>0.84</td>
</tr>
</tbody>
</table>
Baseflow Separation

- Baseflow separation with filter
- Recession curve analysis (Arnold et al, 1995)

\[\text{AlphaBf} = \left(-\frac{1}{N} \right) \ln \left(\frac{Q_n}{Q_o} \right) \]

- \(N = \text{Number of day} \)
- \(Q_o = Q \) at the beginning of the recession
- \(Q_n = Q \) at the end of the recession

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
<th>mean</th>
<th>min</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha_Bf</td>
<td>(day)</td>
<td>0.09</td>
<td>0.02</td>
<td>0.58</td>
</tr>
</tbody>
</table>
Preliminary Results:

- Observed Flow (mm)
- Simulated Flow out (mm)
Conclusions

• The Evapotranspiration is a very important parameter to understand the water balance and can be simulated in SWAT

• The most sensitive parameter to calibrate LAI and evapotranspiration was heat unit

Ongoing:
• Compare the data with satellite data
• Future work will include the upscaling of the model for regional catchments, and its application to evaluate the impacts of climate change scenarios
Thank you for your attention