Effects of elevation bands and snow parameters on the hydrological modeling of the upper part of the Garonne watershed (France)

SUN, X., HONG, Y., BERNARD-JANNIN, L., CHEA, R., SAUVAGE, S., SANCHEZ-PEREZ, J.M.
Mountainous areas

- Mountainous areas is an important component for many watersheds
 - Large range of elevations
 - Snow is the common form of keeping water in the mountainous region

- Important in hydrological modelling
 - Snowfall-melting processes
Objective

• Modeling hydrology of catchments included mountainous regions accurately

• SWAT model
 – has been successfully applied all over the world
 – there are already some successful studies on the mountainous areas with SWAT

• Test the effects
 – Snowfall-melting processes
 – Elevation
Study area

Land use

Soil

Elevation

2013 International SWAT Conference, Toulouse, France
Simulated results without snow and elevation bands

Tonneins

Portet

Saint-Béat

G-MOD

2013 International SWAT Conference, Toulouse, France
Elevation and snow in SWAT

• Elevation bands
 – Variation of precipitation and temperature with elevation

\[R_{band} = R_{day} + (EL_{band} - EL_{gage}) \cdot \frac{plaps}{days_{pcp,yr} \cdot 1000} \]

\[T_{mx,band} = T_{mx} + (EL_{band} - EL_{gage}) \cdot \frac{tlaps}{1000} \]

• Snowfall-melting processes

\[SNO = SNO + R_{day} - E_{sub} - SNO_{mlt} \]
Subbasins with elevation bands

Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Component</th>
<th>Description</th>
<th>Default value</th>
<th>Applied value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLAPS</td>
<td>Subbasin</td>
<td>Temperature lapse rate (°C/km)</td>
<td>0</td>
<td>-6.3</td>
</tr>
<tr>
<td>PLAS</td>
<td>Subbasin</td>
<td>Precipitation lapse rate (mm/km)</td>
<td>0</td>
<td>415</td>
</tr>
<tr>
<td>SNO_SUB</td>
<td>Subbasin</td>
<td>Initial snow water content (mm)</td>
<td>0</td>
<td>84</td>
</tr>
<tr>
<td>SNOCOVMX</td>
<td>Basin/snow</td>
<td>Minimum snow water content of SNO\textsubscript{100}(mm)</td>
<td>1</td>
<td>200</td>
</tr>
<tr>
<td>SNO50COV</td>
<td>Basin/snow</td>
<td>Fraction of snow volume of 50% snow cover</td>
<td>0.5</td>
<td>0.18</td>
</tr>
<tr>
<td>SFTMP</td>
<td>Basin/snow</td>
<td>Snowfall temperature (°C)</td>
<td>1</td>
<td>1.5</td>
</tr>
<tr>
<td>SMTMP</td>
<td>Basin/snow</td>
<td>Snow melt base temperature (°C)</td>
<td>0.5</td>
<td>2.5</td>
</tr>
<tr>
<td>SMFMX</td>
<td>Basin/snow</td>
<td>Maximum snowmelt rate (mm/C-day)</td>
<td>4.5</td>
<td>8.88</td>
</tr>
<tr>
<td>SMFMN</td>
<td>Basin/snow</td>
<td>Minimum snowmelt rate (mm/C-day)</td>
<td>4.5</td>
<td>0.64</td>
</tr>
<tr>
<td>TIMP</td>
<td>Basin/snow</td>
<td>Snowpack temperature lag factor</td>
<td>1</td>
<td>0.44</td>
</tr>
</tbody>
</table>
Simulated results - altered snow parameters

Nash-Sutcliffe

R^2

G-MOD

2013 International SWAT Conference, Toulouse, France
Simulated results - added elevation bands

\[R^2 \]

FNormalized Nash-Sutcliffe

\[0.10 \]

\[0.20 \]

\[0.30 \]

\[0.40 \]

\[0.50 \]

\[0.60 \]

\[0.70 \]

\[0.80 \]

2013 International SWAT Conference, Toulouse, France
Simulated results
-applied snow parameters and elevation bands

G-MOD

2013 International SWAT Conference, Toulouse, France
Discharge variation of Saint-Béat and Valentine

Graphs:
- **Saint-Béat**
 - Q_{obs}(m^3/s)
 - Q_{ele+snow}(m^3/s)
 - Q_{reference}(m^3/s)
- **Valentine**
 - Q_{obs}(m^3/s)
 - Q_{ele+snow}(m^3/s)
 - Q_{reference}(m^3/s)
• The evaporation is very low but infiltration of the surface water increased.
• The recharge of groundwater is increased in winter due to snowmelt and decreased in soil frost depth
Conclusion

• For most of the stations, adding elevation bands and snow parameters improve the simulated results

• Added elevation bands got better results than just modify snow parameters

• Small impact on station far from the mountains

• Few worse results
 – Possible impact of anthropization (dams)
 – Natural processes (special characteristic of mountainous hydrology)
Thank you!
Equations of snow melt

\[SNO_{mlt} = b_{mlt} \cdot sno_{cov} \left[\frac{T_{snow} + T_{mx} - T_{mlt}}{2} \right] \]

where \(SNO_{mlt} \) is the amount of snow melt on a given day (mm H2O), \(b_{mlt} \) is the melt factor for the day (mm H2O/day-°C), \(sno_{cov} \) is the fraction of the HRU area covered by snow, \(T_{snow} \) is the snow pack temperature on a given day (°C), \(T_{mlt} \) is the base temperature above which snow melt is allowed (°C).

\[b_{mlt} = \left(\frac{b_{mlt6} + b_{mlt12}}{2} \right) + \left(\frac{b_{mlt6} - b_{mlt12}}{2} \cdot \sin\left(\frac{2 \pi}{365} \cdot (d_n - 81) \right) \right) \]

where \(b_{mlt} \) is the melt factor for the day (mm H2O/day-°C), \(b_{mlt6} \) is the melt factor for June 21 (mm H2O/day-°C), \(b_{mlt12} \) is the melt factor for December 21 (mm H2O/day-°C), \(d_n \) is the day number of the year.

\[sno_{cov} = \frac{SNO}{SNO_{100}} \cdot \frac{SNO}{SNO_{100}} \cdot \exp\left(\frac{cov_1 - cov_2 \cdot SNO}{SNO_{100}} \right)^{-1} \]

where \(sno_{cov} \) is the fraction of the HRU area covered by snow, \(SNO \) is the water content of the snow pack on a given day (mm H2O), \(SNO_{100} \) is the threshold depth of snow at 100% coverage (mm H2O), \(cov_1 \) and \(cov_2 \) are coefficients that define the shape of the curve, the values used for \(cov_1 \) and \(cov_2 \) are determined by the equation using two known points: 95% coverage at 95% of \(SNO_{100} \) and 50% coverage at a user specified fraction of \(SNO_{100} \)

\[T_{snow(d_n)} = T_{snow(d_n-1)} \cdot (1 - l_{sno}) + \bar{T}_{av} \cdot l_{sno} \]

where \(T_{snow(dn)} \) is the snow pack temperature on a given day(°C), \(l_{sno} \) is the snow temperature lag factor, and \(T_{av} \) is the mean air temperature on the current day (°C).
Snow fall-melting and elevation bands in SWAT

\[SNO = SNO + R_{day} - E_{sub} - SNO_{mlt} \]

where \(SNO \) is the water content of the snow pack on a given day (mm H\(_2\)O), \(R_{day} \) is the amount of precipitation on a given day (added only if average temperature is lower than the boundary temperature (mm H\(_2\)O), \(E_{sub} \) is the amount of sublimation on a given day (mm H\(_2\)O), \(SNO_{mlt} \) is the amount of snow melt on a given day (mm H\(_2\)O).

\[R_{band} = R_{day} + (EL_{band} - EL_{gage}) \cdot \frac{plaps}{days_{pcp,yr} \cdot 1000} \text{ when } R_{day} > 0.01 \]

\[T_{mx,band} = T_{mx} + (EL_{band} - EL_{gage}) \cdot \frac{tlaps}{1000} \]

\[T_{mn,band} = T_{mn} + (EL_{band} - EL_{gage}) \cdot \frac{tlaps}{1000} \]

\[\overline{T}_{av,band} = \overline{T}_{av} + (EL_{band} - EL_{gage}) \cdot \frac{tlaps}{1000} \]

where \(R_{band} \) is the precipitation falling in the elevation band (mm H\(_2\)O), \(R_{day} \) is the precipitation recorded at the gage or generated from gage data (mm H\(_2\)O); \(EL_{band} \) is the mean elevation in the elevation band (m), \(EL_{gage} \) is the elevation at the recording gage (m), \(plaps \) is the precipitation lapse rate (mm H\(_2\)O/km), \(days_{pcp,yr} \) is the average number of days of precipitation in the sub-basin in a year, where \(T_{mx,band} \) is the maximum daily temperature in the elevation band (°C), \(T_{mn,band} \) is the minimum daily temperature in the elevation band (°C), \(T_{av,band} \) is the mean daily temperature in the elevation band (°C), \(T_{mx} \) is the maximum daily temperature recorded at the gage or generated from gage data (°C), \(T_{mn} \) is the minimum daily temperature recorded at the gage or generated from gage data (°C), \(T_{av} \) is the mean daily temperature recorded at the gage or generated from gage data (°C), \(tlaps \) is the temperature lapse rate (°C/km), and 1000 is a factor needed to convert meters to kilometers.
<table>
<thead>
<tr>
<th>Parameters</th>
<th>definition</th>
<th>Min Value</th>
<th>Max Value</th>
<th>Applied Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>.bsn</td>
<td>ESCO</td>
<td>Soil evaporation compensation factor</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>EPCO</td>
<td>Plant water uptake compensation factor</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>SURLAG</td>
<td>Surface runoff lag time</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>.GW</td>
<td>GW_DELAY</td>
<td>Ground water delay</td>
<td>0</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>GW_REVAP</td>
<td>Ground water revap</td>
<td>0.02</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>RCHRG_DP</td>
<td>Deep aquifer percolation factor</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>ALPHA_BF</td>
<td>Base flow alpha factor</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>.mgt</td>
<td>CN2</td>
<td>SCS curve number</td>
<td>35</td>
<td>98</td>
</tr>
<tr>
<td>.bsn</td>
<td>PRF</td>
<td>Peak rate adjustment factor for sediment routing</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>SPCON</td>
<td>Linear parameters for calculating the channel sediment routing</td>
<td>0.0001</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>SPEXP</td>
<td>Exponent parameter for calculating the channel sediment routing</td>
<td>1</td>
<td>1.5</td>
</tr>
</tbody>
</table>