Evaluation of Model Calibration and Uncertainty Analysis with Incorporation of Watershed General Information

Haw Yen
R. Bailey, M. Ahmadi, M. Arabi, M. White, J. Arnold

July 17, 2013
2013 International SWAT Conference
Toulouse, France
Outline

- Overview
- Calibration of Watershed Models
- Manual and Auto-Calibration
- Constrained Optimization for Watershed Model Calibration
- Case Study & Results
- Discussion & Conclusion
Overview

- Advanced technology in computer science
 - Complex watershed simulation models
 - Distributed in space & process-based
 - Long term simulations with large amount of data

- Development of complex watershed models
 - Evaluate impact from climate changing, various human activities on issues such as:
 - Availability of water resources
 - Water quality
 - Watershed management
Calibration of Watershed Models

- **Why and how do we calibrate?**
 - Model parameters can be case sensitive
 - Before conducting model simulation for various scenarios
 - To ensure model responses are close to natural responses
 - To minimize the “differences” between observed/simulated data by adjusting values of model parameters
 - “Differences” can be calculated as?
 - Error statistics (ex. RMSE, PBIAS, 1-NS)
Calibration Techniques (1/3)

- Manual Calibration
 - Manual tuning model parameters
 - Easier to get familiar with the watershed system
 - IT IS SLOW!!!
 - Time consuming
 - Extremely difficult to apply for multi-site, multi-variable problems
Auto-Calibration

- Calibration implementing mathematical/statistical theorems
- IT IS Fast!!! (automated optimization process)
- Full understanding of the model is required
 - Selection of the objective function
 - Parameter ranges (upper/lower bounds) must be assigned carefully
Calibration Techniques (3/3)

- Objective function of automated optimization process
 - Mathematical equation to be minimized
 \[RMSE: OF = \sum_{m=1}^{M} \sqrt{\frac{1}{N_m} \sum_{n=1}^{N} [y_{n,\text{sim}}^m - y_{n,\text{obs}}^m]^2} \]

- Behavior definition
 - Statistical thresholds in evaluating model performance
 - To ensure calibrated results satisfy many statistics

<table>
<thead>
<tr>
<th>Performance Rating</th>
<th>Nash-Sutcliffe Coefficient</th>
<th>PBIAS (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Streamflow</td>
</tr>
<tr>
<td>Very Good</td>
<td>0.75 < NSE ≤ 1.00</td>
<td>PBIAS < ±10</td>
</tr>
<tr>
<td>Good</td>
<td>0.65 < NSE ≤ 0.75</td>
<td>±10 ≤ PBIAS < ±15</td>
</tr>
<tr>
<td>Satisfactory</td>
<td>0.50 < NSE ≤ 0.65</td>
<td>±15 ≤ PBIAS < ±25</td>
</tr>
<tr>
<td>Unsatisfactory</td>
<td>NSE ≤ 0.50</td>
<td>PBIAS ≥ ±25</td>
</tr>
</tbody>
</table>

General Performance Ratings, Moriasi et al. (2007)
Constrained Optimization (1/2)

- Intra-watershed responses
 - (X) Time varying responses
 - Hydrograph, water quality in time series
 - (O) A general system response (intra-watershed responses) in terms of summative quantities
 - Ex. Crop yield, accumulated mass of biodegeneration, amount of nutrient leaching
- Calibration without considering intra-watershed responses
 - Actual watershed behavior could be violated
 - Excellent but useless statistics
 - Results are “precisely wrong”
 - Calibrated model parameters are not applicable
Examples of intra-watershed responses (Midwest region of the United States)

- Annual denitrification (DENI)
 - From 0 to 50 kg/ha/yr (David et al., 2009)
- Ratio that NO₃ loadings to streams from subsurface flow (SSQ Ratio) versus all NO₃ loadings
 - No less than 60% (Schilling, 2002)
Case Study Area

- Eagle Creek watershed
 - Central Indiana, USA
 - 248km²
- Available data
 - 1997~2003
 - Streamflow (1 site)
 - NOX (4 sites)
Case Study Settings (1/2)

- Basic settings
 - Daily streamflow + Monthly Total Nitrate (28 parameters)
 - Objective function (Ahmadi et al., 2012)
- Simulation length
- Sampling technique of auto-calibration
 - Dynamically Dimensioned Search (Tolson and Shoemaker, 2007)
Case Study Settings (2/2)

<table>
<thead>
<tr>
<th>Case Scenarios</th>
<th>Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario I</td>
<td>Calibration without any constraints</td>
</tr>
<tr>
<td>Scenario II</td>
<td>Calibration + Constraint (DENI, unit: kg/ha) → 0 ≤ DENI ≤ 50</td>
</tr>
<tr>
<td>Scenario III</td>
<td>Calibration + Constraint (SSQ Ratio) → 0.60 ≤ SSQ Ratio ≤ 1.00</td>
</tr>
</tbody>
</table>
| Scenario IV | Constraints (Both) → \[\begin{align*} &0 \leq DENI \leq 50 \\
&0.60 \leq SSQ Ratio \leq 1.00 \end{align*} \] |
Results (1/6)

- Objective function values

![Graph showing objective function values for different scenarios over the number of model evaluations.](image)
Results (2/6)

- Percentage of parameter samples that satisfy the behavior definition

<table>
<thead>
<tr>
<th>Case Scenarios</th>
<th>Behavior Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Satisfactory</td>
</tr>
<tr>
<td>Scenario I</td>
<td>78.73</td>
</tr>
<tr>
<td>Scenario II</td>
<td>64.40</td>
</tr>
<tr>
<td>Scenario III</td>
<td>1.91</td>
</tr>
<tr>
<td>Scenario IV</td>
<td>60.78</td>
</tr>
</tbody>
</table>
Results (3/6)

- Best results with corresponding DENI & SSQ Ratio

<table>
<thead>
<tr>
<th>Period</th>
<th>Scenario</th>
<th>Nash-Sutcliffe Efficiency Coefficient (NSE)</th>
<th>DENI (kg/ha/yr)</th>
<th>SSQ Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>35 (STR)</td>
<td>32 (NOX)</td>
<td>27 (NOX)</td>
</tr>
<tr>
<td>Calibration</td>
<td>Scenario I</td>
<td>0.91</td>
<td>0.95</td>
<td>0.91</td>
</tr>
<tr>
<td>1997~2000</td>
<td>Scenario II</td>
<td>0.87</td>
<td>0.82</td>
<td>0.78</td>
</tr>
<tr>
<td></td>
<td>Scenario III</td>
<td>0.89</td>
<td>0.89</td>
<td>0.88</td>
</tr>
<tr>
<td></td>
<td>Scenario IV</td>
<td>0.87</td>
<td>0.72</td>
<td>0.88</td>
</tr>
<tr>
<td>Validation</td>
<td>Scenario I</td>
<td>0.77</td>
<td>0.10</td>
<td>0.13</td>
</tr>
<tr>
<td>2001~2003</td>
<td>Scenario II</td>
<td>0.61</td>
<td>0.23</td>
<td>0.47</td>
</tr>
<tr>
<td></td>
<td>Scenario III</td>
<td>0.70</td>
<td>0.20</td>
<td>0.38</td>
</tr>
<tr>
<td></td>
<td>Scenario IV</td>
<td>0.60</td>
<td>0.43</td>
<td>0.58</td>
</tr>
</tbody>
</table>
Results (4/6)

- Percentage of parameter samples penalized for each scenario (%)

<table>
<thead>
<tr>
<th>Case Scenarios</th>
<th>Rate of Penalty</th>
<th>DENI Constraint</th>
<th>SSQ Ratio Constraint</th>
<th>At least one constraint violated</th>
<th>Both constraints violated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario I</td>
<td>0.00</td>
<td>99.83</td>
<td>99.59</td>
<td>99.96</td>
<td>99.46</td>
</tr>
<tr>
<td>Scenario II</td>
<td>24.50</td>
<td>24.50</td>
<td>7.60</td>
<td>26.71</td>
<td>5.39</td>
</tr>
<tr>
<td>Scenario III</td>
<td>48.48</td>
<td>92.99</td>
<td>48.48</td>
<td>93.11</td>
<td>48.34</td>
</tr>
<tr>
<td>Scenario IV</td>
<td>59.24</td>
<td>56.08</td>
<td>22.69</td>
<td>59.24</td>
<td>19.55</td>
</tr>
</tbody>
</table>

- You don’t want to use results from Scenario I at all!
- DENI constraint has influence on SSQ Ratio constraint.
Results (5/6)

- Cumulative distribution functions of constraints

![Cumulative distribution functions of constraints](image)
Results (6/6)

- Cumulative distribution functions of sensitive parameters

- Sensitive to denitrification

- Sensitive to SSQ ratio
Discussion and Conclusion

- It is important to include additional constraints that represent intra-watershed responses
 - Statistically well performed parameter samples are giving wrong outputs in real world applications
 - Watershed characteristics could be violated
 - Especially for watershed which little knowledge is available on parameter ranges

- Interactions between constraints
 - Denitrification constraint has shown great influence over results
 - Automatically regulates SSQ Ratio
Thanks for your attention!

Haw Yen, Ph.D.
hyen@brc.tamus.edu