ESTIMATION OF SEDIMENT YIELD IN KILIYAR SUB-WATERSHED USING SWAT MODEL

Presented by Arun Shourie. R College of Engineering ,Guindy Anna University, Chennai.

Guided by MLV.Lenin Kalyana Sundaram Assistant Professor, CWR Anna University, Chennai

Friday, August 10, 2012

Introduction

Soil erosion is one of the most pressing issues facing on developing countries.

 Soil erosion is defined as "detachment" transportation and deposition of soil particles from one place to another under influence of wind or water.

Sedimentation is defined as any fragmented material, which is transported or deposited by water, air or ice as natural agents.

A number of studies have been carried out to investigate the erosion process and its governing with physical factors. Based on these studies, numerous computer-based models have been developed estimate the rate of sediment yield.

- Hence, Arc- SWAT model was selected and it processes through which hydrologically and it estimates the soil loss to the area of the Kiliyar sub watershed.
- SWAT could be used to identify the Vulnerable area and it used to adopt a best management practices through over the sub watershed

OBJECTIVE

- To develop a sediment transport model for Kiliyar sub watershed using SWAT.
- To identify the vulnerable area of erosion and suggest suitable watershed conservation measures for the Kiliyar sub-watershed.

STUDY AREA DESCRIPTION

• The study area was chosen as Kiliyar sub watershed and it is located in both Thiruvannamalai and Kanchipuram districts.

Basin Watershed Sub watershed State District Toposheets

Latitude Longitude

- Palar - Cheyyar - Kiliyar - Tamil Nadu - Thiruvannamalai, Kanchipuram - 57P/6, 57P/7, 57P/10, 57P/11,57P/14,57P/15 - 12°41'9"N and 12°22'32"N - 79° 53'26" E and 79°25'10"E - 939.91 km².

•Kiliyar River has early named as Suganadhi and it has originated from Iythukinaur. •The flow of river passes through a Arasampet, Vallam, Mazhayiur, Berthur, Maruthavadi, Kilarapakam, Alappakam, Kuvalai, Sempondi. •Maximum flood was occurred at the year of 1985. •we have a three rain gauge station such as Madurantakam, Vandavasi, Uthiramerur. •Agriculture is a main occupation in this area. They mainly cultivating a crops such as Paddy, Sugarcane, Groundnut.

PRESENT STATUS OF KILIYAR RIVER

12314

MODEL DESCRIPTION

SWAT – Soil and water assessment tool .

• It is a river basin or watershed model, scale model has predict the land management practices on water, sediment yield and agricultural chemical complex yield in large complex through the watershed area.

• SWAT model has predict the long term sediment yield to their catchment areas and it has calculated the value of sediment yield through input data.

ArcSWAT – ArcGIS – ArcView extension and graphical user input interference for SWAT

INPUT FOR Arc SWAT MODEL

Map

Soil map
Land use map
DEM(Digital elevation model)

Metrological data Rainfall Relative humidity Sun Shine Wind speed Temperature Thematic layers

2012

Database format

METHODOLOGY

12

TECHNO SOCIO ANALYSIS

- Social impacts refers to the changes in land use, cropping pattern, farmers perception towards soil erosion etc, are studied. In this study, social impact assessment is carried out in vulnerable areas through questionnaire survey.
- The questionnaire survey is conducted in Arasampattu, Mampattu, Beruthur with a sample size of 15 respondents. The obtained data are interpreted in the form of a pie chart to analyse the social impacts faced by local farmers due to erosion.
- It's categories into
- > Types of crops
- Land holdings
- Major Problem faced due to soil loss
 - Major Problem faced during flood

RESULTS

26

Drainage network map of Kiliyar Sub Watershed

Based on the Digital Elevation Model of the watershed is delineated using Arc SWAT. Figure shows the nodal points the stream flow of network which is derived from SWAT using DEM. lt determines the outlet, junction of river, longest path to stream and watershed boundary. Area of Kiliyar sub watershed – 939.91km²

S.No	Land use	Percentage of landuse	
1	Built up area	4.35 %	
2	Agriculture	63.37%	
3	Forest	9.87%	
4	Wastelands	14.84%	

HydrologicalResponseUnit(HRU)areareaswithinawatershedthatrespondhydrologicallysimilarto giveninput.Itisamethodrepresentingthespatialheterogeneityofawatershed.

Arc- SWAT defines the HRU with respect to their sub basin. In this study area, there are 25 sub basin which is divided into 244 HRU units.

Creation of Data Base

- Weather database for the last twelve years (2001 2012) was stored in the SWAT data base through SWAT's weather data input interface.
- Daily rainfall data was stored in dbase tables. Look up tables were prepared for linking the weather station location and rain gauge location to weather database and rainfall data respectively

Rainfall and Sediment Yield for the Period of 2001-2012

S.No	Rainfall Year	Rainfall (mm)	Sediment yield (t/ha)
1	2001	1484.3	260.897
2	2002	815.3	43.631
3	2003	792.5	40.008
4	2004	1232.4	210.652
5	2005	1671.6	601.87
6	2006	1011.5	156.438
7	2007	1580.6	538.366
8	2008	1552.6	478.253
9	2009	1259.1	339.352
10	2010	1259.2	340.636
11	2011	1220.6	207.389
12	2012	50.86	4.867

SEDIMENT YIELD ANALYSIS

Annual sediment yield of 2001-2012

Annual sediment yield of 2003

Erosion Impacts in the sub basin

S.No	No of Subbasin	Area of Subbasin (ha)	Total annual average sediment yield (t/ha/year)	Range of sediment yield (t/ha)	Range of soil erosion
1	10	41164.64	0	0	Nil
2	5	14189.65	238.36	0-250	Slight
3	4	7939.14	355.472	250-360	Moderate
4	3	19813.38	439.865	360-450	Severe
5		10884.19	481.713	450-600	Very Severe

WATER SAMPLES

- In this study, some of the confluence points are selected in the river stream. The location of confluence points such as Arasampattu, Mampattu, Vallam, and Beruthur.
- The water samples are collected for the period of four months (December to March).
- The bottle is rinsed twice before the water samples are collected in the stream along the direction of flow.

S.No	ID	LOCATION	Avg TSS (mg/lit)
1	Δ	Arcompottu	6 7 7
I	Λ	Aisampattu	0.22
2	Μ	Mampattu	6.3
3	ME	beruthur	5.13
4	V	Vallam	5.7

Water Sample Analysis

Average Value of TSS for each

TSS for each location

Comparison of Observed and model value of TSS

S.No	Year	TSS (mg/litre)
1	2001	6765.36
2	2002	4070.52
3	2003	3769.52
4	2004	9668.95
5	2005	12355.82
6	2006	6290.85
7	2007	8954.68
8	2008	8853.41
9	2009	6375.42
10	2010	6365.26
11	2011	5924.76
12	2012*	605.65

	S.No	Date	Observed value	Model value
	1	02-12-2011	6.01	8.80
	2	04-12-2011	7.21	8.33
	3	08-12-2011	11.36	11.80
	4	11-12-2011	23.25	23.83
	5	15-12-2011	2.38	7.29
	6	19-12-2011	7.20	7.00
	7	22-12-2011	2.35	5.80
	8	25-12-2011	5.25	6.89
	9	02-01-2012	5.63	6.32
	10	08-01-2012	4.80	5.60
	11	11-01-2012	5.32	4.99
	12	24-01-2012	3.33	8.36
	13	02-02-2012	3.45	3.45
	14	06-02-2012	8.99	9.65
	15	10-02-2012	6.63	10.67
G	16	13-02-2012	4.32	10.78
	17	17-02-2012	4.12	15.35
K	18	23-02-2012	6.81	10.69
	19	28-02-2012	4.76	5.62
	20	03-03-2012	3.89	2.45
	21	06-03-2012	3.65	11.56
	22	20-03-2012	3.86	10.81
	23	25-03-2012	19.32	16.29
	24	30-03-2012	7.51	5.45

TECHNO SOCIAL ANALYSIS

Conservation Measures

- Since 11.58% of the area has been identified as vulnerable area and it could be treated as one of the priority areas and conservation measures chosen according to the conditions of slope, soil etc.
- Various conservation practices that could be taken up in the vulnerable areas are: Permanent and Semi- Permanent check dams, Establishing field bund, farm- pond, Earthen gully plugs, Channel farming, Agro forestry, Agro horticulture, Grass- seeds sowing along the field bunds, Pipe outlet for field bunds, Disc Plough, Farm pond outlet, Crop rotation, Brushwood dams, Brush packing, Gabions, Wattling, Riprap, Salinity management and Terracing.

CONCLUSION

Based on the analysis to estimate the sediment yield for Kiliyar watershed, the following conclusions are arrived.

- The observed total suspended solids values of the four sample locations at Arasampattu, Vallam, Mampattu, Berthur are 6.22 mg/l, 6.3 mg/l, 5.13 mg/l and 5.7 mg/l respectively. The amount of suspended particles was relatively too low.
- The rainfall analysis was done in a period of twelve years from 2001-2012. The maximum rainfall of 1671.6 mm is occurred in the year of 2005 and the minimum rainfall of 792.5 mm is occurred in the year of 2003.
- The hydrological analysis of the study area using SWAT model generates 244 HRU and 25 subbasins for the sedimentation analysis.

- Different type of thematic maps such as DEM (Digital Elevation Model), Landusemap, Soilmap and weather attributes prepared in ArcGIS and classified in ArcSWAT as model input. The weather attributes data were entered into database format and it is used to derive the sediment yield based on MUSLE formula (Modified Universal Soil Loss Equation).
- The Arc SWAT is used to derive the sediment yield for the entire watershed. The maximum sediment yield was obtained for the year 2005 and it works out to be 601.87 t/ha and the minimum sediment yield was obtained for the year 2003 and it works out to be 40.008 t/ha.

- The results shows that ten sub basin were not affected by the soil erosion which is 43.79 % of the total area. Similarly five basin are slightly affected by the soil erosion in the Kiliyar sub-watershed which is 15.09% of the total area. Moderate soil erosion has occurred in nearly 8.45% of the total area and as far as sub basin is concerned it takes 4 sub basin out of 25 sub basin. Also three sub basins each in severe and very severe are affected by soil erosion which is 21.08% and 11.58% of the total area respectively.
- The model values were compared with the observed values for the period of four months. It is inferred that the model values are higher than the observed values. There is no data avaialbe for the perious months and data collected during the study periods are not enough for the calibration. Hence it is very difficult to match the model values with the observed values. Howverr the model may be improved by adding more observation data with space and time in the future.

Reference

- Allen, J.R.L (1970), 'Physical processes of sedimentation' George Allen and Unwin Publishers, London.
- Arnold, J.G., Williams, J.R., Srinivasan, R. and King, K.W. (1999), 'Soil and Water Assessment Tool manual' USDA, Agricultural Research Service, Texas
- Fadul H and Eldaw., A.K. (2005), 'Watershed Erosion and sediment transport', NBCBN Report, River Morphology research cluster, Egypt.
- Liu, J., Duan, Z., and Song, X. (2009), 'Application of SWAT for sediment yield estimation in a mountainous agricultural basin', Report Of GUCAS, China,
- Kumaraguru, S. (2010), 'Spatial delineation of soil erosion vulnerability in the Poosaripatty watershed using SWAT Model', CWR M.E thesis, Anna university, Chennai.
- Manoj, K. and Shan, K.R. (2010), 'Estimation of sediment yield and areas vulnerable to soil erosion and deposition in a Himalayan watershed using GIS', Current Science, Vol. 98, No 2, pp. 1-9

- Mohamed, Y.A, Betrie, D.G. and Mynett, A. (2010), 'Sediment management modeling in blue Nile basin using SWAT Model', Hydrology Earth System Science, Vol. 7, pp. 5497-5524.
- Daggupati, P. and Mankin, D. (2009), 'Field–Scale targeting of cropland sediment yields using Arc SWAT', Research report of Kanas University, Kanas.
- Karur, R. (2003), 'Assessment of a SWAT model for soil and water management in India', International journal of Land use and water resources research, Vol. 3, pp. 1-7.
- Sengupta, S.M. (1996), 'Introduction to sedimentology', Oxford and IBH publishing co.pvt.ltd.
- Thorne , G.R (1987), "Sediment Transport in Gravel Bed rivers", John wiley& sons .Ltd.
- Vargas.R, Omuto.and Paron, P (2009), 'Soil erosion and sedimentation modelling', FAO-SWALIM Report, Report, No. L-16, Egypt.

