Parallelizing SWAT Calibration in Windows using SUFI2 Program,

Lessons learned from Black Sea Catchment study

Elham Rouholahnejad
elham.rouholahnejad@eawag.ch
Introduction to the Black sea project

BSC SWAT model
 - model set up
 - complication regarding river flows

Calibration
 - Calibration Set up
 - Iteration 1 (rough decisions)
 - Iteration 2
 a) parallelization
 b) parameterization
I. Black Sea Catchment
The project aims at building:

- A high resolution calibrated water quantity and water quality model for the entire region accounting for agricultural activities and point source pollutions using SWAT.
- **Major challenges in calibration process**
 - Lack of sufficient data
 - Large scale application
 - Calibration run time
 - Water managements in the basin
 - Inaccurate data (gauge locations)
 - Flow directions
 - Glacier and snow parameters
II. SWAT model of the Black Sea basin
• Arc SWAT 2009.93.7 was used to parametrize the whole area

• 2 Mkm² drainage area

• 12982 subbasins

• 89202 Hrus

• About 600,000 SWAT input files

• CRU data sets were used as weather data

• Agricultural management for three major crops: wheat, Maize and Barely.

• ET Calculation based on Hargreaves Method

• Daily step SWAT run

• 36 yrs of simulation, 3 yrs warm up period (1970-2006)
Basin, Subbasin, Hrus
Complication in flow directions
Imprisice Basin mask or wrong rivers!
III. Calibration Of the hydrologic model of the Black sea basin
- SWAT Cup, SUFI2
SUFI-2 algorithm

- Uncertainty
 - Attributed to parameters
 - Obtained by calibrating a set of parameter ranges against observed data (priors → posteriors)
 - Characterised by 95% prediction uncertainty (95PPU)

- Dual aim:
 - Maxmise P-factor
 - Minimise R-factor

- Process for each calibration iteration
 - Latin hypercube sampling of parameter space, model simulations, objective function evaluation and parameter updating
Observation stations
First run

- 1970- 2006, 3 years warm up period (34 years)
- Discharge (monthly, 125 stations)
- Default parameter
- 1 run- 37 hours
Observation station check_deleted

Calibration_First Run

![Graph and map image]

Graph and map details for analysis.
Observation station check_deleted
Observation station check_deleted

![Graph](image)
Observation station check_ kept to apply Elev band
Observation station check_deleted
Observation station check_dislocation

Calibration_First Run

q_10565

q_10524

q_10524

q_10524
A few good stations

q_7477

q_7635

q_9393
A few good satations

q_9687

q_11021
Iteration 1

- Calibration and evaluation
 - 1970-2006, 3 years warm up period,
 - 34 years calibration
 - Discharge (monthly, 87)

- Parameter selected based on sensitivity analysis
 → 23 parameters sensitive to flow, global parameters, not parameterized yet

- Initial parameter ranges from physically meaningful limits

- New ranges based on parameterization with highest objective function

200 runs (Estimated run time in a single machine → 350 days!!)

Parameter selected based on sensitivity analysis

23 : Number of Parameters
200 : number of simulations

```
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Lower Limit</th>
<th>Upper Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_CN2.mgt</td>
<td>0.0</td>
<td>0.4</td>
</tr>
<tr>
<td>r_SOL_AWC(1).sol</td>
<td>-0.4</td>
<td>0.2</td>
</tr>
<tr>
<td>v_ESCO.hru</td>
<td>0.5</td>
<td>0.8</td>
</tr>
<tr>
<td>v_GWQMN.gw</td>
<td>500.0</td>
<td>1000</td>
</tr>
<tr>
<td>v_GW_REVAP.gw</td>
<td>0.0</td>
<td>0.1</td>
</tr>
<tr>
<td>v_REVAPMN.gw</td>
<td>200</td>
<td>500</td>
</tr>
<tr>
<td>v_EPCO.hru</td>
<td>0.0</td>
<td>0.5</td>
</tr>
<tr>
<td>v_ALPHA_BF.gw</td>
<td>0.0</td>
<td>1.0</td>
</tr>
<tr>
<td>v_GW_DELAY.gw</td>
<td>30.0</td>
<td>160.0</td>
</tr>
<tr>
<td>v_CH_N2.rte</td>
<td>0.0</td>
<td>0.3</td>
</tr>
<tr>
<td>v_CH_K2.rte</td>
<td>5.0</td>
<td>130.0</td>
</tr>
<tr>
<td>v_ALPHA_BNK.rte</td>
<td>0.0</td>
<td>1.0</td>
</tr>
<tr>
<td>r_SOL_K(1).sol</td>
<td>-0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>r_SOL_BD(1).sol</td>
<td>-0.5</td>
<td>0.6</td>
</tr>
<tr>
<td>v_SFTMP.bsn</td>
<td>-5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>v_SMTMP.bsn</td>
<td>-5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>v_SMFMX.bsn</td>
<td>0.0</td>
<td>10.0</td>
</tr>
<tr>
<td>v_SMFMN.bsn</td>
<td>0.0</td>
<td>10.0</td>
</tr>
<tr>
<td>v_PLAPS.sub</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>v_TLAPS.sub</td>
<td>-10</td>
<td>-6</td>
</tr>
<tr>
<td>r_OV_N.hru</td>
<td>-0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>r_HRU_SLP.hru</td>
<td>-0.2</td>
<td>0.0</td>
</tr>
<tr>
<td>r_SLSUBBSN.hru</td>
<td>0.0</td>
<td>0.1</td>
</tr>
</tbody>
</table>
```
Running time issue

Copy all files in TxtInOut to BACKUP directory

SUFI2_LH_sample.exe
par_val.txt

par_inf.txt
SUFI2_new_pars.exe

no. of parallel processes

SUFI2_extract_*.def

Modified SWAT inputs

SWAT_Edit.exe

swat2009.exe

SWAT outputs

SUFI2_extract_*.exe

*.out

observed.txt

*.out

SUFI2_goal_fn.exe
goal.txt

SUFI2_95ppu.exe
95ppu.txt

Is calibration criteria satisfied?

yes

stop

no
o parallel Sufi2 Speed up tested in Different projects

More details:
o parallel Sufi2 Efficiency tested in Different projects

More details:
parallel Sufi2 Efficiency tested in Different projects

More details:
CERN super computer center
Gridification on CERN Grids
Gridification scheme

200 runs using the parallel processing and Grid infrastructure → 8 days!!

(4 blocks of 50 worker node)
Snow melt, glaciers, elevation band
Model consistently over predicts the flow

- High Surface flow

- Solutions
 - Curve number for different land uses- decrease (CN in *.mgt)
 - Soil available water- increase (SOL_AWC in *.sol)
 - Soil evaporation compensation factor- increase up to 1.0 (ESCO in *.sub)
Model consistently over predicts the flow

- High base flow
- Too little evapotranspiration

- **Solutions**
 - Increase deep percolation loss (adjust threshold depth of water in shallow aquifer required for the base flow to occur) (max 100 mm, GWQMN in *.gw)
 - Increase groundwater revap coefficient (max of 0.4, GW_Revap in *in.gw)
 - Decrease threshold depth of water in shallow aquifer for revap tp occur (min of 0.0, REVAPMN in.gw)
Simulated flow follows the observed pattern but lags the actual flow consistently

- Time of concentration is too long
- Less than actual slope for overland flow
- Over estimated surface roughness
- Snow melt parameters
- Flood routing coefficients

Solutions:

- Increase slope (up to 20%) for overland flow (SLOPE)
- Lower Manning`s roughness coefficient (OV_N)
- Lower the value of overland flow length to 4-10 m, if necessary (SLSUBBSN)
New parameter set

440...... Number of Parameters
500...... number of simulations

- r_CN2.mgt 1580,16,24,31,33,35,51,53,54,55,63,64,81,102,104,107,113,142,143,159,162,166,171,172,1
- r_SOL_AWC(1).sol 1580,16,24,31,33,35,51,53,54,55,63,64,81,102,104,107,113,142,143,159,162,166,171,172,1
- v_ESCO.hru 1580,16,24,31,33,35,51,53,54,55,63,64,81,102,104,107,113,142,143,159,162,166,171,172,1
- v_GWQMN.gw 1580,16,24,31,33,35,51,53,54,55,63,64,81,102,104,107,113,142,143,159,162,166,171,172,1
- v_GW_REVAP.gw 1580,16,24,31,33,35,51,53,54,55,63,64,81,102,104,107,113,142,143,159,162,166,171,172,1
- v_REVAPFMN.gw 1580,16,24,31,33,35,51,53,54,55,63,64,81,102,104,107,113,142,143,159,162,166,171,172,1
- v_EPCO.hru 1580,16,24,31,33,35,51,53,54,55,63,64,81,102,104,107,113,142,143,159,162,166,171,172,1
- v_ALPHA_BF.gw 1580,16,24,31,33,35,51,53,54,55,63,64,81,102,104,107,113,142,143,159,162,166,171,172,1
- v_GW_DELAY.gw 1580,16,24,31,33,35,51,53,54,55,63,64,81,102,104,107,113,142,143,159,162,166,171,172,1
- r_SOL_K(1).sol 1580,16,24,31,33,35,51,53,54,55,63,64,81,102,104,107,113,142,143,159,162,166,171,172,1
- r_SOL_BD(1).sol 1580,16,24,31,33,35,51,53,54,55,63,64,81,102,104,107,113,142,143,159,162,166,171,172,1
- v_SUB_SFTMP().sno 1580,16,24,31,33,35,51,53,54,55,63,64,81,102,104,107,113,142,143,159,162,166,171,172,1
- v_SUB_SMTMP().sno 1580,16,24,31,33,35,51,53,54,55,63,64,81,102,104,107,113,142,143,159,162,166,171,172,1
- v_SUB_SMEMX().sno 1580,16,24,31,33,35,51,53,54,55,63,64,81,102,104,107,113,142,143,159,162,166,171,172,1
- v_SUB_SMFMN().sno 1580,16,24,31,33,35,51,53,54,55,63,64,81,102,104,107,113,142,143,159,162,166,171,172,1
- r_CN2.mgt 5013,1,2,3,4,5,10,11,14,17,18,22,23,25,27,28,36,39,40,45,47,58,59,60,68,73,74,75,76,77
- v_GWQMN.gw 5013,1,2,3,4,5,10,11,14,17,18,22,23,25,27,28,36,39,40,45,47,58,59,60,68,73,74,75,76,77
- v_GW_REVAP.gw 5013,1,2,3,4,5,10,11,14,17,18,22,23,25,27,28,36,39,40,45,47,58,59,60,68,73,74,75,76,77
- v_REVAPFMN.gw 5013,1,2,3,4,5,10,11,14,17,18,22,23,25,27,28,36,39,40,45,47,58,59,60,68,73,74,75,76,77
- v_ESCO.hru 5013,1,2,3,4,5,10,11,14,17,18,22,23,25,27,28,36,39,40,45,47,58,59,60,68,73,74,75,76,77
- v_ALPHA_BF.gw 5013,1,2,3,4,5,10,11,14,17,18,22,23,25,27,28,36,39,40,45,47,58,59,60,68,73,74,75,76,77
- v_GW_DELAY.gw 5013,1,2,3,4,5,10,11,14,17,18,22,23,25,27,28,36,39,40,45,47,58,59,60,68,73,74,75,76,77
- r_SOL_K(1).sol 5013,1,2,3,4,5,10,11,14,17,18,22,23,25,27,28,36,39,40,45,47,58,59,60,68,73,74,75,76,77
- r_SOL_BD(1).sol 5013,1,2,3,4,5,10,11,14,17,18,22,23,25,27,28,36,39,40,45,47,58,59,60,68,73,74,75,76,77
- v_SUB_SFTMP().sno 5013,1,2,3,4,5,10,11,14,17,18,22,23,25,27,28,36,39,40,45,47,58,59,60,68,73,74,75,76,77
- v_SUB_SMTMP().sno 5013,1,2,3,4,5,10,11,14,17,18,22,23,25,27,28,36,39,40,45,47,58,59,60,68,73,74,75,76,77
- v_SUB_SMEMX().sno 5013,1,2,3,4,5,10,11,14,17,18,22,23,25,27,28,36,39,40,45,47,58,59,60,68,73,74,75,76,77
- v_SUB_SMFMN().sno 5013,1,2,3,4,5,10,11,14,17,18,22,23,25,27,28,36,39,40,45,47,58,59,60,68,73,74,75,76,77
- r_CN2.mgt 6174,6069,6073,6075,6076,6081,6091,6094,6101,6102,6104,6105,6115,6149,6158,6159,6168,6
Once the model is calibrated, the impact of climate change and land use change on water resources will be evaluated.
Acknowledgments
This project has been funded by the European Commission’s Seventh Research Framework through the enviroGRIDS project (Grant Agreement n 226740).