A comparison of stream flow prediction using station and gridded meteorological datasets in IRAN

SEPIDEH RAMEZANI

Isfahan University of Technology

Tang-e Meyran, Yasuj Province
Background

Objectives

Methodology

Results & Outlook

2012 International SWAT Conference
Indian Institute of Technology Delhi
New Delhi, India

CRU climate data grid points (0.5° * 0.5°)

Observed climate stations
506 subbasin delineation

1269 subbasin delineation

Area: 1,648,000 km² (165 million hectare)
Altitude: -80 to 5670 m
Average annual precipitation: 252 mm
Precipitation range: 20-2000 mm
Temperature: -44 to 56 degree C
Main objectives:

- Compare the effect of two climate datasets (observed and gridded) on the prediction of the stream flow
- Showing the relationship between resolution of the rain gauge network and subbasin size
Model Input

Background

- DEM (Extracted from global USGS DEM map)
- High: 5670 m
- Low: -80 m

Methodology

- Landuse (Extracted from global USGS landuse/land cover)
 - Legend:
 - 1: URMD
 - 2: CRDY
 - 3: CRIR
 - 4: CRGR
 - 5: CRWO
 - 6: GRAS
 - 7: SHR
 - 8: MIGS
 - 9: FODN
 - 10: SAVA
 - 11: FODB
 - 12: FODB
 - 13: SAVA
 - 14: FOEN
 - 15: FOMI
 - 16: WATB
 - 17: WEHB
 - 18: WEWO
 - 19: BSVG
 - 20: TUWO
 - 21: TUMI
 - 22: TUMI

Soil (Extracted from global FAO soil map, 1995)

Outlook

- Soil (Extracted from global FAO soil map, 1995)
- High: 5670 m
- Low: -80 m
Model Setup

Scenario 1: 506 subbasins using observed climate dataset of WSIMO

Scenario 2: 1269 subbasins using observed climate dataset of WSIMO

Scenario 3: 506 subbasins using CRU gridded climate dataset

Scenario 4: 1269 subbasins using CRU gridded climate dataset

Simulation Setup

<table>
<thead>
<tr>
<th>Simulation Setup</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulation time</td>
<td>1987-2002</td>
</tr>
<tr>
<td>Warm-up period</td>
<td>3 years</td>
</tr>
<tr>
<td>Number of observed stations</td>
<td>150</td>
</tr>
<tr>
<td>Number of gridded points(CRU)</td>
<td>1200</td>
</tr>
<tr>
<td>ET calculation method</td>
<td>Hargreaves</td>
</tr>
</tbody>
</table>
Nash-Sutcliffe Efficiency (NSE)

\[NS = 1 - \frac{\sum_{i=1}^{n} (O_i - P_i)^2}{\sum_{i=1}^{n} (O_i - \bar{O})^2} \]

• Evaluates the model performance with reference to the mean of the observed data
• Its value can vary from 1 to \(-\infty\)
506 subbasins delineation

NSE
(station climate data)

NSE
(CRU)
1269 subbasins delineation

NSE (station climate data)

NSE (CRU)
Performance of the SWAT prediction when...

<table>
<thead>
<tr>
<th>Subbasin</th>
<th>NSE (station climate data)</th>
<th>NSE (CRU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR1</td>
<td>-1.97</td>
<td>-0.68</td>
</tr>
<tr>
<td>HR2</td>
<td>-0.40</td>
<td>-0.90</td>
</tr>
<tr>
<td>HR3</td>
<td>-1.69</td>
<td>-1.34</td>
</tr>
<tr>
<td>HR4</td>
<td>-29.25</td>
<td>-5.68</td>
</tr>
<tr>
<td>HR5</td>
<td>-87.25</td>
<td>-153.54</td>
</tr>
<tr>
<td>HR6</td>
<td>-53.33</td>
<td>-16.64</td>
</tr>
<tr>
<td>HR7</td>
<td>-19.83</td>
<td>-41.01</td>
</tr>
<tr>
<td>HR8</td>
<td>-5.76</td>
<td>-2.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subbasin</th>
<th>NSE (station climate data)</th>
<th>NSE (CRU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR1</td>
<td>-1.52</td>
<td>-0.76</td>
</tr>
<tr>
<td>HR2</td>
<td>-0.36</td>
<td>-0.50</td>
</tr>
<tr>
<td>HR3</td>
<td>-0.53</td>
<td>-0.22</td>
</tr>
<tr>
<td>HR4</td>
<td>-8.34</td>
<td>-3.52</td>
</tr>
<tr>
<td>HR5</td>
<td>-10.40</td>
<td>-11.52</td>
</tr>
<tr>
<td>HR6</td>
<td>-116.46</td>
<td>-18.17</td>
</tr>
<tr>
<td>HR7</td>
<td>-7.46</td>
<td>-25.26</td>
</tr>
<tr>
<td>HR8</td>
<td>-2.11</td>
<td>-1.36</td>
</tr>
</tbody>
</table>
Results

• CRU high resolution grid dataset is useful for the hydrological simulation

• Improvement was significant in more subbasin delineation

• Global CRU climate dataset can be used in regions of climate data scarcity with high confidence
outlook

- Using elevation band
- Calibration, Validation and Uncertainty analysis
- Using more Efficiency criteria like:
 - Coefficient of determination (R^2)
 - Root Mean Square Error (RMSE)
 - br^2
 - Percent Bias (PBIAS)
Thank you for your attention. Your comments are most welcome!