HYDROLOGICAL CYCLE SIMULATION OF KODAVANAR RIVER (ATHUR BLOCK) WATERSHED USING SOIL AND WATER ASSESSMENT TOOL (SWAT)

K.Kaviya,
Research Scholar, IRS, Anna University

Dr.M.Ramalingam,
Director, IRS, Anna University
Authors

- K.Kaviya, Research Scholar, IRS, Anna University
- Dr.M.Ramalingam, Director, IRS, Anna University
Objectives

- Development of hydrologic response units (HRUs) based on the land use and soil distributions.
- Simulation of hydrologic model, verification and validation.
Study Area

- The study area chosen for this study is Attur block in Dindigul district and it’s traversed by Kodavanar River. This block is located in the southern side of dindugul district and bounded by Vadipatti and Nilakottai in south and south east, Dindugul block in the east, Reddiyapuram in the north and Kodaikannal in the west. The area lies between geographic co-ordinates, north latitude 10° 14’50” to 10° 20’00” and east longitude 77°37’45” to 77°46’00”. The extent of area is 321.44 sq km.
The area lies between geographic co-ordinates, north latitude 10° 14’50” to 10° 20’00” and east longitude 77°37’45” to 77°46’00”. The extent of area is 321.44 sq km.

IRS IC -LISS 111+PAN merged data - scale 1:50,000
Data Used

- **Spatial data:**
 - DEM (Digital Elevation Model)
 - Land use/land Cover Map
 - Soil Map

- **Non-Spatial data:**
 - *Time series of certain meteorological variables*
 - *Soil input data base*
 - *Land cover/ Plant growth data base*
SWAT Model Description

- Soil and Water Assessment Tool
- Developed by USDA-Agriculture Research Service
- Physically based model
- Continuous time model (long term yield model)
- SWAT was developed to predict the impact of land management practices on water, sediment and agricultural chemical yields in large complex watersheds with varying soils, land use and management conditions over a long periods of time.
Methodology Flow Chart

Input Data
- DEM
- Mask
- Hydrography
- Land Use
- Raw GIS Data
- Soils

Processing and Display
- Watershed Delineation
- HRU Definition

Parameterization
- SWAT Databases
- Editing Calibration

Run
- SWAT Model

Output Maps
- Output Tables and Charts

ArcView

Figure 1.1
Methodology

- Step 1
 - Data base creation
Step 2
Delineation of Watershed
Step 3
Creation of HRUs
Step 3
Simulation of the Model
Monthly Flow curve for the single subbasin
Annual Surface Runoff for each subbasin
SIMULATED RUNOFF CURVE

CALIBRATION

flow in m³/s

duration IN YEARS

- simulated runoff
VALIDATION OF THE MODEL

![Validation of the Model](image_url)
YEARLY AVERAGE FLOW STATISTICS

<table>
<thead>
<tr>
<th></th>
<th>OBSERVED RUNOFF</th>
<th>SIMULATED RUNOFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEAN</td>
<td>154.1409</td>
<td>142.4745</td>
</tr>
<tr>
<td>STD DEVIATION</td>
<td>79.29586</td>
<td>85.89632</td>
</tr>
<tr>
<td>SLOP</td>
<td>0.902385</td>
<td></td>
</tr>
<tr>
<td>Correlation coefficient</td>
<td>0.9774</td>
<td></td>
</tr>
<tr>
<td>Coefficient of Determination(R^2)</td>
<td>0.9555</td>
<td></td>
</tr>
</tbody>
</table>
AVERAGE MONTHLY EVAPOTRANSPIRATION
MONTHLY AVERAGE PET STATISTICAL VALIDATION

<table>
<thead>
<tr>
<th></th>
<th>OBSERVED PET</th>
<th>SIMULATED PET</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEAN</td>
<td>158.9167</td>
<td>151.07921</td>
</tr>
<tr>
<td>STDDEVEIATION</td>
<td>28.96537</td>
<td>31.83488</td>
</tr>
<tr>
<td>Correlation coefficient $^\circ$</td>
<td>0.96779</td>
<td></td>
</tr>
<tr>
<td>Coefficient of Determination(R^2)</td>
<td>0.9366</td>
<td></td>
</tr>
</tbody>
</table>
Conclusion

- In most instances simulated values were closer to the observed values during the calibration period, calibration should also be based on several years of simulation in order to appraise parameters under a wide range of climatic and soil conditions.
- In each case calibrated models were developed in identifying land use characteristics responsible for adverse impact in stream water quality.

The following conclusions are derived from the study:
- The percentage difference of the runoff obtained from the study is -7.5mm
- PET percentage difference obtained from 0 to 6.610mm of H2O
- Sediment yield ranges from 0 to 44.73t
- Organic Nitrogen yield obtained from the study ranges from 0 to 18.453kg/ha
- Nitrate in the surface runoff ranges from 0 to 0.381kg/ha
- Organic phosphorus ranges from 0 to 1.811kg/ha
RECOMMENDATION

- SWAT, calibration and validation procedures presented in this case studies will be useful to researchers and planners in studying water quality problems and taking decisions.
- The further studies based on nutrient and sediment yield can be carried out based on this study.
- The hydrological models help in evaluating and selecting the alternative land use and management practices. And it helps for the Socio economic development of the society. The model helps to find the water quality also.
- The project will be highly useful for the design of conservation structures to reduce the ill effects of sedimentation and to select the priority watersheds for resource management programmes.
REFERENCES

- FAO, 1988, FAO Watershed Management Field Manual - Vegetative and Soil Treatment Measures
THANK YOU