Analysis of the impact of water conservation measures on the hydrological response of a medium-sized watershed

ANALYSIS OF THE IMPACT OF WATER CONSERVATION MEASURES ON THE HYDROLOGICAL RESPONSE OF A MEDIUM-SIZED WATERSHED

Arpit Chouksey, Pori Das and Subashisa Dutta

INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI
GUWAHATI-781039
ASSAM, INDIA
INTRODUCTION

1. North East, India receives on average 200-400 cm rainfall from which 80-90% of the rainfall occurs during monsoon months (May 15 – Sept 30)

2. Flash floods occur during rainy season and acute shortage of water for domestic and agricultural uses during winter. Rural areas are situated usually at upstream receives adequate rain, with no facilities to conserve the water for winter.

3. Average annual surface water potential of 585.6 km3 has been assessed in this region, which is highest among all the river systems in India and fifth in the world. Out of this, 24.0 km3 is utilisable water and is merely 4.1% of annual surface water potential.

4. People living in hills and mountains of North-eastern India have developed a number of novel practices of farming, checking soil erosion, preventing landslides and of conserving water, beneficial in retaining fertility of soil; preventing land slides and checking soil erosion and in retaining the moisture of soil and conserving water.

5. Common Structures: Check Dams, Percolation Pond, Irrigation Tanks
Field photographs showing small water conservation structures
Small water Conservation Measures in hilly watersheds

Hydrological impact of Small Water Harvesting Structures

1. Store first-order stream flow during early monsoon period

2. Recharge the shallow ground water

3. Release the stored water during non-monsoon period

4. Increase the flashiness due to wetness area
OBJECTIVES

- To calibrate and validate a semi-distributed hydrological model for an agro-forestry dominated watershed to obtain its hydrological response for pre-conservation period

- To obtain the hydrological response of the watershed without water harvesting structures for post-conservation period by model simulation

- To quantify the change in hydrological response due to water harvesting structures by conducting mass curve analysis and peak flow analysis for post-conservation period

- To quantify the change in hydrological response of the watershed under best-guess land use change conditions
METHODOLOGY
Hydrological Impact of Small Water Conservation Structures

Pre-Conservation Period
(Before 1985)
- Geo-Spatial Database
- Rainfall

Semi-Distributed Hydrological Model
- Discharge Hydrograph
- Comparison with Observed Hydrograph
- Mass Curve Analysis
- Lumped Surface Storage
- Effect on Flash Floods

Post-Conservation Period
(1999, 2001)
- Geo-Spatial Database
- Rainfall
- Calibrated Hydrological Model
- Discharge Hydrograph analysis
Methodology

Impact of Land-use Change on hydrological response

Best guess Land-use Change ➔ Calibrated Hydrological Model ➔ Discharge Hydrograph

Rainfall temperature ➔ Impact of Land-use Change on hydrological response
Introduction to RISE Model*

A semi-distributed hydrological model defining the hydrological processes in Sub-tropical hilly region with paddy fields

Runoff Generation
- Macropore dominated vegetated hillslope
- Paddy cultivation dominated agricultural lands
- Semi-impervious urban areas
- Wet lands as permanent sinks

Subsurface flow component

Channel routing
- Lateral flow to the channel segments
- Linearized channel routing

Only 5 calibration parameters and required spatial input data can be obtained from international/national sources

Conceptual diagram of the model
Rice Irrigation System Evaluation (RISE) model (Dutta and Zade 2003): Semi-Distributed physically based hydrological model

- Dominant hydrological processes based on different distinct hydrological similarity classes (HSC):

Infiltration Process

- **Macropore dominated vegetated hill-slopes**

 \[
 R = 0, \text{ when } i \leq f_{\text{max}} \\
 R = i - f_{\text{max}}, \text{ when } i \geq f_{\text{max}}
 \]

 where \(i \) is the rainfall intensity.

- **Paddy cultivation dominated agricultural lands**

 \[
 f = \frac{k_1 k_2 (h_1 + h_2 + h + \Psi_1)}{h_1 k_2 + h_2 k_1}
 \]

 where \(\Psi_1 \) is the suction pressure of the saturated plow layer; \(k_1 \) and \(k_2 \) are saturated hydraulic conductivities of plow layer and hard pan formations respectively. Value of \(k_2 \) can be obtained from the relation: \(k_2 = \frac{k_1}{r} \) where \(r \) is the degree of soil impermeability (dimensionless) due to the formation of hard pan layer.

- **Semi-impervious urban area**

 \[
 f_c(t) = 0.5 S t^{-0.5} + A_0
 \]

 where \(f_c(t) \) is the potential infiltration rate (mm/h), \(S \) is the sorptivity, and \(A_0 \) is the gravitational infiltration rate (mm/h).
Model Components

- **Water Budgeting**

 \[
 \frac{dh}{dt} = (i - f - ET_{\text{actual}} - h_{ov} + f_{ex})
 \]

- **Subsurface flow**

 1. \(q_i = T_o \tan \beta \exp\left(-S_i/m\right) \)
 2. \(S_i = \overline{S} + m \left[\left(\lambda - \ln \left(\frac{a}{\tan \beta} \right) \right) - \left(\ln T_o - \delta \right) \right] \)
 3. \(S'_t = S'_{t-1} + (q_{t-1} - f) \Delta t \)

- **Semi-distributed channel routing**

 \[
 \frac{\partial y}{\partial t} + \frac{1}{b} \frac{\partial (UA)}{\partial x} = 0
 \]

 \[
 \frac{1}{g} \frac{\partial U}{\partial t} + \frac{U}{g} \frac{\partial U}{\partial x} + \frac{\partial y}{\partial x} + S_f = 0
 \]

 \[
 \frac{\partial Q}{\partial t} = D \frac{\partial^2 Q}{\partial x^2} - C \frac{\partial Q}{\partial x}
 \]

 \[
 Q_i(x,t) = \frac{x}{2(\pi Dt^3)^{1/2}} \exp \left[-\frac{(x-Ct)^2}{4Dt} \right]
 \]
Performance of the Model for Predicting Flow variation in Brahmaputra

Index map showing gauging stations

- Two gauging stations - Tezpur, Guwahati
- 25 years period from 1978 to 2003
- Eight wet years of highest flood lift (Karmaker and Dutta, 2010).

INPUT DATA AND PARAMETERS OF THE MODEL

<table>
<thead>
<tr>
<th>Parameter/ Data type</th>
<th>Name</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static</td>
<td>Topography and Basin Characteristics</td>
<td>SRTM</td>
</tr>
<tr>
<td></td>
<td>Soil type distribution</td>
<td>NBSS&LUP, India</td>
</tr>
<tr>
<td></td>
<td>Soil parameters</td>
<td>NBSS&LUP, India</td>
</tr>
<tr>
<td></td>
<td>Land use classes</td>
<td>ETM Imagery (Classified)</td>
</tr>
<tr>
<td></td>
<td>Average surface storage in paddy field (h)</td>
<td>Calibration parameter</td>
</tr>
<tr>
<td></td>
<td>Degree of impermeability of hardpan formation (r)</td>
<td>Calibration parameter</td>
</tr>
<tr>
<td></td>
<td>Minimum storing depth in macropores (S_{\text{max}})</td>
<td>Calibration parameter</td>
</tr>
<tr>
<td>Dynamic</td>
<td>Exponential transmissivity decay function (m)</td>
<td>Calibration parameter</td>
</tr>
<tr>
<td></td>
<td>Natural logarithm of transmissivity of just saturated soil profile (\ln T_0)</td>
<td>Calibration parameter</td>
</tr>
<tr>
<td></td>
<td>Initial saturated topographic index (TI)</td>
<td>SRTM</td>
</tr>
<tr>
<td></td>
<td>Variable advection, diffusion constants (a, b, \alpha, \beta)</td>
<td>Computed model parameters</td>
</tr>
<tr>
<td>Time Series</td>
<td>Daily observed stage data</td>
<td>Water Resources Department, Assam</td>
</tr>
<tr>
<td></td>
<td>Rainfall distribution</td>
<td>Aprohdite</td>
</tr>
</tbody>
</table>
the Kulsi watershed in the state of Meghalaya, India, a part of the Brahmaputra basin
originates from the West Khasi hills and flows north, finally joining the Brahmaputra River.
The catchment area: 1660 km square
mostly hilly terrain, the average altitude and slope is 1400m above msl and 39.22% respectively.
Humid, sub-tropical and monsoonal climate zone receiving high monsoonal rainfall.
The average annual rainfall: about 2395 mm.
Under saturated condition, such a formation is highly conducive to rapid subsurface storm flow.
The land use/land cover: Evergreen forest, semi-evergreen forest, moist-deciduous forest, bamboo-thickets, Jhum and rolling grasslands.
Geospatial dataset: Kulsi Catchment

- Land-Use Map
- Drainage Map
- Soil distribution
- Digital Elevation Model of Kulsi Basin
Model Calibration and Validation
(Pre-soil water conservation measures: Before 1985)

Calibration Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Calibrated Value</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average surface storage in paddy field (h_{mp})</td>
<td>0.3 m</td>
<td>0-0.5 m</td>
</tr>
<tr>
<td>Degree of impermeability of hardpan formation (r)</td>
<td>1000</td>
<td>700-2000</td>
</tr>
<tr>
<td>Maximum storing depth in macropores (S_{max})</td>
<td>0.1 m</td>
<td>0.03-0.9 m</td>
</tr>
<tr>
<td>Exponential transmissivity decay function (m)</td>
<td>0.035</td>
<td>0.002-0.05</td>
</tr>
<tr>
<td>Natural logarithm of transmissivity of just saturated soil (lnT_0)</td>
<td>0.01</td>
<td>0-1.6</td>
</tr>
</tbody>
</table>

Peak Observed Discharge: 246, Peak Simulated Discharge: 210, Performance Index: 0.03
Mass curve analysis for Cumulative Flow during Pre-Conservation Period

No Significant deviation between observed and simulated cumulative flow
Effect on Flashiness Behavior due to Conservation Structures

<table>
<thead>
<tr>
<th>Period</th>
<th>Year</th>
<th>Peak Discharge Without Conservation</th>
<th>Peak Discharge With Conservation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-Conservation Period</td>
<td>1978</td>
<td>250</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td>1985</td>
<td>425</td>
<td>550</td>
</tr>
<tr>
<td>Post-Conservation Period</td>
<td>1999</td>
<td>450°</td>
<td>850</td>
</tr>
<tr>
<td></td>
<td>2001</td>
<td>400</td>
<td>600</td>
</tr>
</tbody>
</table>
Mass curve analysis: Cumulative Flow during Post-Conservation Period

Total Rainfall: 2100 mm

- Lumped Storage by Conservation Structures: 156 MCM (about 5% of Total Flow)
- Groundwater Contribution: 913 MCM (about 30% of Total Flow)
Mass curve analysis: Cumulative Flow during Post-Conservation Period

Total Rainfall: 2000 mm

Lumped Storage by Conservation Structures: 265 MCM (about 10% of Total Flow)
Groundwater Recharge: 509 MCM (about 20% of Total Flow)
Evaluation of Land-use Change (Forest to Horticulture)

1985

1999

2001

Percentage change of Landuse (Forest to Horticulture)
CONCLUSIONS

- With limited hydrological input dataset, a semi-distributed hydrological model is able to predict the hydrological response of agro-forestry watersheds.

- Change in hydrological response due to water harvesting structures: less flow during early monsoon period, lumped storage varies year to year, significant increase in dry month flow, however, flashiness increased by 2 times.

- Hydrological impact of land use change: no significant change in both cumulative flow and flashiness.

- Long-period hydrological database can help to quantify the hydrologic response with its temporal component.
THANK YOU A LOT