Assessing the impact of prospective and conflicting irrigation and water resources management plans in the Inner Niger Delta (IND) and the Upper Niger Basin (UNB) under climate change conditions

Niger basin

The IND is a network of tributaries, channels, swamps and lakes in the climatic sahelian zone which forms an inundation plain experiencing a drastic seasonal variation in discharge, and flood extent, from 8 to 25 thousands km². Consisting of the middle course of the Niger River, the third longest river in Africa with a transboundary watercourse of 42,000 km and a drainage basin of 2.1M km², water serves multiple and conflicting functions for more than 1M. people in the sub-region.

Table 1 Characteristics of irrigated land in Upper Niger Basin

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>Irrigation system</th>
<th>Water uptake Mm³/y</th>
<th>Crop</th>
<th>Yield t/ha</th>
<th>Area km²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Office de Selingué</td>
<td>Gravity-governed full water control</td>
<td>33.6</td>
<td>Rice</td>
<td>4.95</td>
<td>34</td>
</tr>
<tr>
<td>2</td>
<td>Office de Bogouédaga</td>
<td>Gravity-governed full water control</td>
<td>215</td>
<td>Rice</td>
<td>4.26</td>
<td>26</td>
</tr>
<tr>
<td>3</td>
<td>Office de Beviala</td>
<td>Mixed system</td>
<td>575</td>
<td>Tomato, tobacco</td>
<td>1.50</td>
<td>117</td>
</tr>
<tr>
<td>4</td>
<td>Office de Segou</td>
<td>Controlled submergence</td>
<td>250</td>
<td>Rice, corn, cotton</td>
<td>1.45</td>
<td>350</td>
</tr>
<tr>
<td>5</td>
<td>Office du Niger</td>
<td>Gravity-governed full water control</td>
<td>1082</td>
<td>Rice</td>
<td>0.90</td>
<td>917</td>
</tr>
<tr>
<td>6</td>
<td>Office de Kati</td>
<td>Controlled submergence</td>
<td>549</td>
<td>Rice</td>
<td>1.50</td>
<td>298</td>
</tr>
<tr>
<td>7</td>
<td>Directions Reg.</td>
<td>Traditional river-fed</td>
<td>1878</td>
<td></td>
<td>1.90</td>
<td>4510</td>
</tr>
<tr>
<td>8</td>
<td>Pump-assisted total-water-management irrigation</td>
<td>1.4 km (1986 estimation)</td>
<td>6 to 9 t/ha</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SWIM Soil and Water Integrated Model

The ecohydrolological model SWIM uses available regional data to simulate runoff generation, nutrient and carbon cycling, plant growth and crop yield, river discharge and erosion as integrated river basin processes at a daily time step, supported by a distribution function approach and GIS post processing. It was developed to investigate climate and land use change impacts at the regional scale.

Figure 1 Upper Niger Basin: Dams and Irrigated lands map

Figure 2 Niger River Basin Percentage Change Rainfall by decade from the reference period 1961-1990 with CRU TS3.1 data (Climate Research Unit)

Climate vulnerability to drought

Figure 2 shows a significant rainfall deviation between decades especially 1990 and 1980 which were very dry. In general the northern section of the river basin seems to consistently show increasingly wet conditions, whereas in fact this arid area is very sensitive to slight increases in rain fall (even 1mm more can result in a large percentage increase). This river basin is very dependent on rainfall; changes in the timing or abundance of these events impacts the downstream users and the ecosystem. Cclm and Watch data will be further used for projections of hydrological simulations.

Figure 2 Niger River Basin Percentage Change Rainfall by decade from the reference period 1961-1990 with CRU TS3.1 data (Climate Research Unit)

Preliminary investigations for the development of a water allocation module in SWIM

Conflicting water uses between IND & UNB

The current infrastructure in the UNB is composed of dams, reservoirs and diversion channels (Figure1). In the coming decades these infrastructures will be reinforced allowing capacity to develop energy production and to expand fully managed irrigation system upstream (Table1). Coupled with the effects of climate change, these projects have a significant impact on the ecosystem and on the flow regime of the IND which compromise the perenniality of navigation, fishing and traditional river-fed agriculture, essential for meeting regional food security.

Brief review of irrigation approaches

Some models like WEAP are based on the FAO Penman Monteith dual crop coefficient method when in SWIM and SWAT, the EPIC approach governs the plant and crop water requirement. In SWAT, 3 independent modules (irr_rch.f, irr_res,f, irr_sub.f) rule the water transfer for irrigation from 3 uptake sources into a HRU (reach, reservoir, shallow or deep aquifer and external sources).

Figure 3 Water diversion module schematic concept

Finally, the concept of a Water allocation module aims to transfer water between hydrotopo, shallow or deep aquifer, reservoir, point source, reach and diversion channel (Scheme 2) with the most flexible specifications for the water volume inputs and outputs (constant, yearly, monthly, daily values, fraction of volume, unlimited, triggered by plants, triggered by soil content ...). Due to the large range of sources, the challenge is to create a module flexible enough to be called at different stages of SWIM process respecting the water balance fundamentals.

Scheme 1 Water diversion schematic module concept

Scheme 2 Water allocation module schematic concept

Author Contact
Samuel Fournet
Pappelallee 20, 14469 Potsdam
fournet@pik-potsdam.de

Institution Contact
Presse- und Öffentlichkeitsarbeit
Telegrafenberg A31 | D-14473 Potsdam
www.pik-potsdam.de

Authors: Fournet Samuel [1], Kone Bakary [2], Liersch Stefan [3], Hattermann Fred [1]


© Potsdam Institute for Climate Impact Research, 2017