Coupling SWAT with In-stream Models for an Integrated Assessment of Sediment Transport

Kiesel J.¹, Fohrer N.¹, Schmalz B.¹, Brown G.L.²

¹ Institute for the Conservation of Natural Resources, Dep. of Hydrology, Kiel University
² USACE Coastal and Hydraulics Laboratory, ERDC, Vicksburg, MS
Outline

1. Background and scope of the project
2. Model coupling
3. Modeling water fluxes on three scales
4. Modeling sediment fluxes on three scales
5. Discussion
Integrated ecohydrological river basin assessment

<table>
<thead>
<tr>
<th>Reality</th>
<th>Abstraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Map](Kirchweddelbek (SH), Foto: U. Holm)</td>
<td> </td>
</tr>
<tr>
<td>Catchment processes</td>
<td>Habitat</td>
</tr>
<tr>
<td>In-stream processes (1D, 2D)</td>
<td></td>
</tr>
</tbody>
</table>

Kirchweddelbek (SH), Foto: U. Holm
The in-stream models

HEC-RAS

Widely used hydraulic model for simulating open channel flow and sediment processes in river networks

ArcGIS interface available

(USACE 2010)

ADH

Adaptive Hydraulics model for simulating 2D-shallow water problems with sediment transport on a triangular finite element mesh

Dynamic adaption of mesh resolution during simulation

ArcGIS interface had to be programmed

(Berger et al. 2010)
Why additional in-stream models?

Supplies spatially distributed results from the catchment.

No differentiation of stream properties beyond subbasin.

Supplies spatially distributed results at cross sections.

Too coarse to model in-stream morphodynamics for habitat assessments.

Supplies spatially distributed results on points.

Very high resolution in the stream possible.
1. Background and scope of the project

2. Model coupling

3. Modeling water fluxes on three scales

4. Modeling sediment fluxes on three scales

5. Discussion
Kielstau catchment, UNESCO demosite for Ecohydrology

- 50km²
- 8.2°C
- 870mm/a
- Low hydraulic gradients, near-surface groundwater
- Agricultural land use
- Urban influence
Process depiction on three scales

- ADH: Velocity, Depth, Sediment
- HEC-RAS: Velocity, Depth, Sediment
- SWAT: Flow, Sediment
ArcGIS 9.2 PYTHON script:

- SWAT tributary flows (output.rch) are transferred to the according HEC-RAS cross sections.
- SWAT tributary sediment loads (output.sub) are transferred to the according HEC-RAS cross sections.
- SWAT water temperature is transferred to HEC-RAS time series.
Model coupling

- HEC-RAS
- ADH

ADH mesh

HEC-RAS channel

HEC-RAS cross section (xs)

10m scale
HEC-RAS flow values and loads of each grain fraction are transferred from the cross section to the ADH inflow mesh nodes for each daily time step.
Outline

1. Background and scope of the project
2. Model coupling
3. Modeling water fluxes on three scales
4. Modeling sediment fluxes on three scales
5. Discussion
Catchment hydrology

$r^2 = 0.82$

$NS = 0.78$

PCP

Observed

Modelled (calibration)

PCP

Observed

Modelled (verification)

Flow [m³/s]

Sinks

Drains

$Sinks$
1D stream hydraulics

Dep. of Hydrology and Water Resources Management – Fohrer et al.
1D stream hydraulics

Water depth

![HEC-RAS depth comparison](image)

Flow velocity

![HEC-RAS velocity comparison](image)

24 flow scenarios: $Q_{\text{min}} = 0.06 \text{m}^3/\text{s}$, $Q_{\text{max}} = 1.26 \text{m}^3/\text{s}$
2D stream hydraulics

- depth cross sections
- depth and velocity cross sections

[Diagram showing a stream with depth and velocity cross sections indicated by green and red lines, respectively.]
2D stream hydraulics

Water depth

Flow velocity

1 flow scenario: \(Q = 0.73 \text{m}^3/\text{s} \)
2D stream hydraulics

- Green: depth cross sections
- Red: depth and velocity cross sections

1 2 3
2D hydraulics – cross sections

Water depth [m]

Flow velocity [m/s]

Distance from left bank [m]

1

2

3

modelled

measured
Outline

1. Background and scope of the project
2. Model coupling
3. Modeling water fluxes on three scales
4. Modeling sediment fluxes on three scales
5. Discussion
Daily sediment loads in lowland catchments

Field 15%
Drains 15%
River 70%

R²=0.63 NSE=0.57
R²=0.65 NSE=0.58
1D stream sediment - temporal

\[r^2 = 0.31, \text{ monthly } r^2 = 0.68 \]
1D stream sediment - spatial

Channel change in 4 years (2006 to 2009)

- 6.6 cm
0 cm
+ 3.0 cm
2D stream sediment

Bed displacement 01.-30. April 2008

Bed displacement [m]
-0.13 - -0.08
-0.08 - -0.05
-0.05 - -0.04
-0.04 - -0.02
-0.02 - -0.01
0.00 - 0.01
0.01 - 0.02
0.02 - 0.04
0.04 - 0.06

Dep. of Hydrology and Water Resources Management
Outline

1. Background and scope of the project
2. Model coupling
3. Modeling water fluxes on three scales
4. Modeling sediment fluxes on three scales
5. Discussion
Discussion

• The combined SWAT – HEC-RAS model is a feasible way to model different sediment pathways over yearly periods in a reasonable resolution.

• The shown temporal and spatial 1D sediment results are plausible and can be used to identify erosion and deposition sections.

• The combined HEC-RAS – ADH model can simulate detailed substrate conditions, but with a high computational demand.

• The shown spatial 2D sediment results need further calibration, as current displacement rates are too high.

• The capability of the model system to depict hydraulic- and substrate conditions on different scales based on catchment and in-stream properties is valuable for habitat assessments.
Dipl. Ing. Jens Kiesel
jkiesel@hydrology.uni-kiel.de

Thank you for your attention