Evapotranspiration forecast using SWAT model and weather forecast model

Pedro Chambel Leitão
chambel.maretec@ist.utl.pt

Carina Almeida (1), Eduardo Jauch (1), Rosa Trancoso (1), Ramiro Neves (1), José Chambel Leitão (2)
Aquapath-soil
Service to support agriculture production
Project financed by:

European Space Agency
Objective

• Create a service with a daily prediction of irrigation needs based on
 ▫ Weather forecasts
 ▫ Hydrologic models
 ▫ Vegetation models
 ▫ LAI measurements made by satellite
Study area presentation

- Six users were considered
- Each user can have more than one corn field
Users feedback

- Methodology / product more competitive
- Information sets appropriate and compatible with the rest of the tasks ongoing and planned in the organizations
- Product provided will support the work that your organization carries out
- No significant shortcomings stopping the service to be used
Products/Service delivery

- SMS
- Website project
SMS Service

Download of meteorological values (measurements and forecast)

Simulation with SWAT-MOHID

Results saved in database

SMS Information

Meteorological Information (previous week and forecast to the next week)

Actual Evapotranspiration (previous week and forecast to the next week)

Send SMS

Automathic SMS sent to the user
Model input

- **Meteorology** local daily values of pcp, temp, HR, wind, radiation.
Model input

• **Topography** – SRTM – 22 m
Model input

• **Land use:** data from land use of 2006 with detailed farmers map
Model input

• Portuguese soil map (1 : 25 000)
Evaluation of ET0 (Alfalfa)

- SWAT ET0 results compared with standard FAO56
Different meteorological stations

- Impact of using different meteorological stations on ETo (Paul de Magos – ARBVS and Baragem de Magos – SNIRH)
Evaluation of forecast

<table>
<thead>
<tr>
<th>Week</th>
<th>Initial Date</th>
<th>Next Week (model forecasts)</th>
<th>Previous Week (user estimations)</th>
<th>Difference</th>
<th>% of Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>19-07-2010</td>
<td>30</td>
<td>38</td>
<td>-3</td>
<td>-8%</td>
</tr>
<tr>
<td>2</td>
<td>26-07-2010</td>
<td>41</td>
<td>60</td>
<td>13</td>
<td>22%</td>
</tr>
<tr>
<td>3</td>
<td>02-08-2010</td>
<td>47</td>
<td>50</td>
<td>-2</td>
<td>-4%</td>
</tr>
<tr>
<td>4</td>
<td>09-08-2010</td>
<td>52</td>
<td>51</td>
<td>8</td>
<td>16%</td>
</tr>
<tr>
<td>5</td>
<td>16-08-2010</td>
<td>43</td>
<td>32</td>
<td>-1</td>
<td>-3%</td>
</tr>
<tr>
<td>6</td>
<td>23-08-2010</td>
<td>33</td>
<td>31</td>
<td>1</td>
<td>3%</td>
</tr>
<tr>
<td>7</td>
<td>30-08-2010</td>
<td>30</td>
<td>36</td>
<td>-2</td>
<td>-6%</td>
</tr>
<tr>
<td>8</td>
<td>06-09-2010</td>
<td>38</td>
<td>24</td>
<td>-5</td>
<td>-21%</td>
</tr>
<tr>
<td>9</td>
<td>13-09-2010</td>
<td>29</td>
<td>25</td>
<td>-1</td>
<td>-4%</td>
</tr>
<tr>
<td>10</td>
<td>20-09-2010</td>
<td>26</td>
<td>15</td>
<td>-6</td>
<td>-40%</td>
</tr>
<tr>
<td>11</td>
<td>27-09-2010</td>
<td>21</td>
<td>14</td>
<td>-4</td>
<td>-29%</td>
</tr>
<tr>
<td>12</td>
<td>04-10-2010</td>
<td>18</td>
<td>8</td>
<td>3</td>
<td>38%</td>
</tr>
<tr>
<td>13</td>
<td>11-10-2010</td>
<td>5</td>
<td>6</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Irrigation vs Prediction

Irrigation = 549 mm

Prediction = 456 mm
Conclusions

• Service to send SMS with the SWAT results was implemented and we got good feedback from users.

• Estimations of actual evapotranspiration allow a reduction of 20% in irrigation water.

• ETo from SWAT shows small difference from FAO56 equation.
Sub basin example

• José Núncio Farmer field – test user
Sub basin example

- Location of José Núncio field – farmer in Sorraia Valley
Sub basin example

- Soil Type: A — Aluviosoils with median texture
Sub basin example

- **Land use:** Corn