Quantifying trade-offs between bioenergy production, food production, water quality and water quantity aspects in a German case study
Sven Lautenbach, Martin Volk, Michael Strauch, G. Whittaker
Trade-offs

- What are the searching for?

- How much do we gain in goal A if we decrease goal B?
- Functional relationships between different goals?
- Functional relationships between goals and policy instruments?
From model results to management support?
From model results to management support?

- Model
 - Climate
 - Land use
 - Management action
 - Optimization
 - Yield
 - Low flow
 - Water quality

- Yield
- Low flow
- Water quality
Trade-offs

- for bioenergy/food production in the Parthe -

optimization

crop rotation schemes

food

bioenergy

eexisting land use distribution

arable land

non arable land

SWAT

objective function

5 perc. min discharge

average NO$_3^-$ conc

yield food

yield bioenergy

Lautenbach, Seppelt, Strauch, Volk, in prep
Genetic algorithm

- Population of Genoms
- Objective function
- Selection
- Genetic Operators (Crossover, Mutation)
The study area: Parthe watershed

- **Area:** 315 km²
- **Topography:** Flat (106 m and 230 m a.s.l.)
- **Precipitation:** 590 to 640 mm/a (1981-2000).
- Typical lowland river.
- **Runoff dynamics:** High flows in spring (snow melt and rainfall); Low flows in summer with occasional storm flow events.
Management scenarios

Actual crop rotations
(Abraham et al. 2004)
- 32% winter wheat
- 20% winter barley
- 20% winter oilseed rape
- 7% maize

Scenario Food
- no energy crops
 (no rapeseed) in crop rotations

Scenario Biodiesel
- extended rapeseed
 (added to crop rotations)
 ➞ 30% of cropped area
 (+ radical scenario: 100%)

Scenario Biogas
- pure energy crop rotation
 for whole-plant-silage
- two-culture-system
 (Scheffer 1998)
 ➞ 30% of cropped area
 (+ radical scenario: 100%)
Management scenarios

Example: scenario Biogas

Two-culture-system according to Scheffer (1999) with crop rotation:

- **January** → Winter Rye
- **February** → Sunflower
- **March** → Winter Barley
- **April** → Winter Barley
- **May** → Maize
- **June** → Winter Rye
- **July** → Winter Rye
- **August** → Sorghum Sud.
- **September** → Triticale
- **October** → Maize
- **November** → Winter Rye
- **December** → Winter Rye

- fermentation residue as fertilizer, direct seeding of summer crop

Sven Lautenbach, Martin Volk, Michael Strauch, Gerald Whittaker
International SWAT Conference, Toledo, Spain, June 15 – 17, 2011
Biodiesel - rapeseed
Biogas - rapeseed

Biogas, biodiesel, food only
Considering policy constraints
Conclusions/Outlook/Vision

- Importance of spatial configuration
- Policy support needs functional trade-offs
 - Optimization techniques are an important tool for that
- To dos:
 - Additional crop rotation schemes
 - Adaptation of management schemes depending on HRU properties
 - Include contribution margin or and protein content?
Thank you for your attention

Questions?