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SWAT UNGAUGED: HYDROLOGICAL BUDGET 
AND CROP YIELD PREDICTIONS IN THE 

UPPER MISSISSIPPI RIVER BASIN

R. Srinivasan,  X. Zhang,  J. Arnold

ABSTRACT. Physically based, distributed hydrologic models are increasingly used in assessments of water resources, best
management practices, and climate and land use changes. Model performance evaluation in ungauged basins is an important
research topic. In this study, we propose a framework for developing Soil and Water Assessment Tool (SWAT) input data,
including hydrography, terrain, land use, soil, tile, weather, and management practices, for the Upper Mississippi River basin
(UMRB). We also present a performance evaluation of SWAT hydrologic budget and crop yield simulations in the UMRB
without calibration. The uncalibrated SWAT model ably predicts annual streamflow at 11 USGS gauges and crop yield at a
four‐digit hydrologic unit code (HUC) scale. For monthly streamflow simulation, the performance of SWAT is marginally poor
compared with that of annual flow, which may be due to incomplete information about reservoirs and dams within the UMRB.
Further validation shows that SWAT can predict base flow contribution ratio reasonably well. Compared with three calibrated
SWAT models developed in previous studies of the entire UMRB, the uncalibrated SWAT model presented here can provide
similar results. Overall, the SWAT model can provide satisfactory predictions on hydrologic budget and crop yield in the
UMRB without calibration. The results emphasize the importance and prospects of using accurate spatial input data for the
physically based SWAT model. This study also examines biofuel‐biomass production by simulating all agricultural lands with
switchgrass, producing satisfactory results in estimating biomass availability for biofuel production.

Keywords. Crop yield, Soil and Water Assessment Tool, Streamflow, Ungauged basin, Upper Mississippi River basin.

atershed computer models have long been an
integral part of any assessment, and model
types vary with intended application. The ap‐
plication of most hydrological models often

requires a large amount of spatially variable input data and
a large number of parameters. Due to the lack of high‐quality
input data and conceptual simplification of hydrological pro‐
cesses, these models need to be calibrated, by varying de‐
grees, to the observed hydrologic variables (Beven and
Binley, 1992; Beven, 2006; Wagener et al., 2004; Gupta et
al., 2008). In the past two decades, model calibration has
progressed significantly (e.g., Duan et al., 1992; Beven and
Binley, 1992; Beven, 2006; Gupta et al., 1998; Vrugt et al.,
2003). Model calibration requires sufficiently long, high‐
quality observations of streamflow and other variables, but
observed data on both spatial and temporal scales of interest
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are always very limited, especially in ungauged basins (Siva‐
palan et al., 2003). For predictions of future environmental
impacts (e.g., land use) on hydrologic variables, Wagener
(2007) pointed out that many researchers face the fact that no
gauging stations exist in their area of study. In addition, it is
worth noting that uncertainties associated with input data and
measured hydrologic variables may lead to biased estimation
of parameters calibrated using one or several stream gauges.
For example, under typical conditions, errors ranged from
6% to 16% for streamflow measurements (Harmel et al.,
2006). A case study in Reynolds Creek Experimental Wa‐
tershed showed that a parameter set with high streamflow
simulation performance at the watershed outlet can have
much lower performance at some internal points within the
watershed (X. Zhang et al., 2008a). Very frequently, the cali‐
brated model is user‐dependent, as it is based on the model
user's experience and knowledge about the watershed, mod‐
el, chosen parameters, and their ranges. Therefore, calibrated
models may be limited to their intended purpose.

Different methods have been used to build hydrologic mod‐
eling systems in ungauged basins, including the extrapolation of
response information from gauged to ungauged basins, mea‐
surements by remote sensing, the application of process‐based
hydrological models in which climate inputs are specified or
measured, and the application of combined meteorological‐
hydrological models that do not require the user to specify pre‐
cipitation inputs (Sivapalan et al., 2003). Recently, many studies
have examined approaches that improve the applicability of
hydrologic models in ungauged basins, including a priori pa‐
rameter estimation from physical watershed characteristics
(e.g., Atkinson et al., 2003), regionalization of model param‐
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eters (e.g., Vandewiele and Elias, 1995), regionalization of
hydrologic indices (e.g., Yadav et al., 2007; Z. Zhang et al.,
2008), application of satellite remote sensing (e.g., Lakshmi,
2004), and the use of process‐based, distributed hydrologic
models (e.g., Moretti and Montanari, 2008).

One approach to addressing the use of hydrological mod‐
els in ungauged basins is developing a model that uses physi‐
cally based inputs both spatially and temporally along with
comprehensiveness in the model's interrelationships and
ability to predict ungauged basins reasonably well. The Soil
and Water Assessment Tool (SWAT) model was originally
developed to operate in large‐scale ungauged basins with
little or no calibration efforts (Arnold et al., 1998). It attempts
to incorporate spatially distributed and physically distributed
watershed inputs to simulate a set of comprehensive pro‐
cesses, such as hydrology (both surface and subsurface up to
the shallow aquifer), sedimentation, crop/vegetative growth,
pesticides, bacteria, and comprehensive nutrient cycling in
soils, streams, and crop uptake. Most SWAT parameters can
be estimated automatically using the GIS interface and mete‐
orological information combined with internal model data‐
bases (Srinivasan et al., 1998; X. Zhang et al., 2008b). The
USEPA incorporated SWAT into the Better Assessment Sci‐
ence Integrating Point and Nonpoint Sources (BASINS) soft‐
ware package (Di Luzio et al., 2004), and the USDA is
applying it in the Conservation Effects Assessment Project
(CEAP, 2008). Over 600 published, peer‐reviewed articles
have reported SWAT applications, reviews of SWAT compo‐
nents, or other research including SWAT (Gassman et al.,
2007; https://www.card.iastate.edu/swat_articles/). Howev‐
er, most model applications involve calibration procedures
(e.g., van Griensven et al., 2008; Abbaspour, 2008; X. Zhang
et al., 2009a, 2009b). Therefore, the main objective of this
study was to produce datasets for the Upper Mississippi River
basin that can be used to evaluate the long‐term effects on
hydrologic budget and crop/biomass production by the
SWAT model without calibration.

The Upper Mississippi River basin (UMRB) (fig. 1) is a “hot
spot” for studies of the hydrological cycle and nutrient transport
and fate. Agricultural land accounts for more than 40% of the
UMRB total area (approximately 491,665 km2). Nitrate‐
nitrogen flowing to the Mississippi River basin from agricultur‐
al lands is implicated as the major source of nutrients leading
to hypoxia in the Gulf of Mexico (Goolsby et al., 1999, Dale et.
al., 2007). The UMRB comprises only 15% of the Mississippi
River basin's drainage area but contributes more than half of the
nitrate‐nitrogen reaching the Gulf of Mexico (Goolsby et al.,
1997). The existing critical environmental issues of the U.S.
Midwest region and the Gulf of Mexico could be worsened by
the emphasis on future increases in renewable and alternative
biofuels (Simpson et al., 2008, Powers, 2007). The USDA and
EPA have both applied the SWAT model to simulate and evalu‐
ate strategies for more effectively managing water resources
and nutrient inputs (Jewett et al., 2007; CEAP, 2008). Several
previous studies applied the SWAT model in the UMRB to sim‐
ulate water budgets and nutrient movement. The first SWAT ap‐
plication at the entire UMRB scale was conducted by Arnold et
al. (2000). Recently, Jha et al. (2004) and Wu and Tanaka (2005)
also used SWAT in UMRB studies to evaluate climate change
effects on water yield and estimate the social cost of reducing
nitrogen loads. In all three previous UMRB applications of
SWAT, the authors implemented parameter calibration proce‐
dures to match simulated and observed streamflow. In this study,

we are focusing on hydrologic simulation, which is the basis for
sediment and nutrient predictions. The hypothesis of this study
is that, given appropriate spatial input data, SWAT can provide
a satisfactory simulation of the water budget. We present a
framework for developing spatial climate and watershed con‐
figuration data for the entire UMRB, assess the performance of
an uncalibrated SWAT model in predicting water and crop yield,
and compare the uncalibrated SWAT model with calibrated
SWAT models applied in previous studies. The results of this
study are expected to provide valuable information on the appli‐
cability of SWAT in medium to large‐scale ungauged basins.

MATERIALS AND METHODS
STUDY AREA DESCRIPTION

The location of the UMRB, which is shown in figure 1, in‐
cludes large parts of the states of Illinois, Iowa, Minnesota, Mis‐
souri, and Wisconsin and smaller portions of Indiana, Michigan,
and South Dakota. The Upper Mississippi River flows through
a 2100 km waterway from Lake Itasca in northern Minnesota
to its confluence with the Ohio River at the southern tip of Illi‐
nois. The Upper Mississippi River System is the only water
body in the nation recognized by Congress as both a “nationally
significant ecosystem” and a “nationally significant commer‐
cial navigation system” (www.umrba.org/facts.htm). The river
system supports commercial navigation, recreation, and a wide
variety of ecosystems. In addition, the region contains more
than 30 million residents who rely on river water for public and
industrial supplies, power plant cooling, wastewater assimila‐
tion, and other uses (Jha et al., 2004). Physically based models
that can simulate the hydrologic cycle, crop yield, soil erosion,
and nutrient transport and fate are useful tools for evaluating
Upper Mississippi River System sustainability, best manage‐
ment practices, and climate and land use/land cover changes. In
the following sections, SWAT and its setup are introduced.

SWAT MODEL DESCRIPTION
SWAT is a continuous‐time, long‐term, distributed‐

parameter model (Arnold et al., 1998). SWAT divides a wa‐
tershed into subbasins connected by a stream network and
further delineates each subbasin into hydrologic response
units (HRUs), which consist of unique combinations of land
cover, slope, and soil type. It is assumed that there is no inter‐
action between HRUs. In other words, the HRUs are non‐
spatially distributed. HRU delineation can minimize a
simulation's computational costs by lumping similar soil and
land use areas into a single unit (Neitsch et al., 2005). SWAT
is able to simulate surface and subsurface flow, sediment gen‐
eration and deposit, and nutrient movement and fate through
the watershed system. For this study, only SWAT components
concerned with runoff simulation are briefly introduced.
Hydrologic routines within SWAT account for snowfall and
melt, vadose zone processes (i.e., infiltration, evaporation,
plant uptake, lateral flows, and percolation), and groundwa‐
ter flows (Neitsch et al., 2005). Surface runoff volume is esti‐
mated using a modified version of the Soil Conservation
Service (SCS) curve number (CN) method (USDA‐SCS,
1972). A kinematic storage model is used to predict lateral
flow, whereas return flow is simulated by creating a shallow
aquifer (Arnold et al., 1998). The Muskingum method is used
for channel flood routing. Outflow from a channel is adjusted
for transmission losses, evaporation, diversions, and return
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Figure 1. Location of the Upper Mississippi River basin with eight‐digit HUCs and state boundaries.

flow. As a physically based hydrological model, SWAT re‐
quires a great deal of input data in order to derive parameters
that control the hydrologic processes in a given watershed.
Major input datasets include weather, hydrography, topogra‐
phy, soils, land use/land cover data, and management practic‐
es. The methods used to develop UMRB input data for SWAT
are introduced as follows.

SWAT MODEL SETUP

Hydrography and Digital Elevation Model (DEM)
In the ArcSWAT interface (Winchell et al., 2007) user‐

defined watershed boundary option, we used the eight‐digit
USGS hydrologic unit codes (HUCs), National Hydrography
Dataset (NHD) stream dataset, and a 90 m (3 arc second) digi‐
tal elevation model (DEM) as SWAT inputs to provide wa‐
tershed configuration and topographic parameter estimation.
We defined a total of 131 HUCs in the UMRB. The main in‐
puts provided by the DEM were channel length (of both the
main routing stream and tributary routing streams), channel
slope, and overland slope by HRU. We tested both a 30 m
(1:24000) DEM and 90 m (1:100000) DEM, both of which
are available from the USGS. The differences in overland
slope between 30 m and 90 m DEM data were not substantial
given the size of the HRUs and subbasin HUCs. We also
found no substantial difference in model prediction at the
monthly and annual scales of streamflow. Hence, we chose
the 90 m DEM for this study in order to reduce the project
size. In addition, we identified 15 major reservoirs on the
main stream (shown in fig. 4) of the UMRB and inserted them
into the ArcSWAT interface.

Land Use/Land Cover
The land use map is the next critical SWAT input. Crop

rotation and management data are essential for accurate es‐
timation of water and crop yield. In this study, we obtained
the land use map from two sources of information, the Crop‐
land Data Layer (CDL) (www.nass.usda.gov/research/Crop ‐
land/SARS1a.htm) and 2001 National Land Cover Data

(NLCD2001) (Homer et al, 2004). The CDL contains crop‐
specific digital data layers, suitable for use in geographic in‐
formation system (GIS) applications. The CDL program
focuses on classifying corn, soybean, rice, and cotton agricul‐
tural regions in many Midwestern and Mississippi Delta
states using remote sensing imagery and on‐the‐ground mon‐
itoring programs through the USDA (www.nass.usda.gov/re‐
search/Cropland/SARS1a.htm).  The CDL focuses on
cultivated land use, but defines non‐agricultural land use
types very broadly. Therefore, we suggest referring to NLCD
for non‐agricultural land cover information (www.nass.us‐
da.gov/research/Cropland/sarsfaqs2.html).

In this study, we propose a framework for combining both
NLCD2001 and CDL to generate the final land use map. Gen‐
eral procedures for generating the UMRB land use map are
described as follows: (1) overlay multiple years of CDL in‐
formation to produce crop rotation maps, and (2) use NLCD
to judge whether one pixel is cultivated or not. If cultivated,
assign a crop rotation type from the overlaid CDL map to that
pixel. Otherwise, that pixel will acquire an NLCD value. Cur‐
rently, the CDL is available from the Geospatial Data Gate‐
way (http://datagateway.nrcs.usda.gov/) free of charge. CDL
data are available for the following years: 2000‐2006 for
Iowa, 2000‐2006 for Illinois, 2003‐2006 for Wisconsin, 2006
for Minnesota, and 2006 for Missouri. Based on an analysis
of a three‐year rotation in Iowa, Illinois, and Wisconsin from
2004‐2006, corn‐soybean or soybean‐corn rotations consti‐
tute a significant portion (approximately 25%) of the UMRB
land use. We assumed that these two rotation types are also
the major rotation types for Minnesota and Missouri due to
a lack of multi‐year CDL maps in these two states. For the
small portion of the UMRB located in South Dakota and Indi‐
ana, we derived eight cropland rotation types involving corn
and soybean (coded from 301 to 308), and three other land use
types (coded as 223, 236, 262) were from the CDL. The final
land use map is shown in figure 2, and the areas of each land
use type and classification system are shown in table 1. The
land use types with values less than 100 use the NLCD classi-
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Table 1. Land use classification system for the
UMRB using NLCD and CDL data layers.

Value
Area
(km2)

Percentage
(%) Land Use Type

11 13,651.9 2.8 Open water
21 23,080.2 4.7 Developed, open space
22 13,014.3 2.6 Developed, low intensity
23 3,823.5 0.8 Developed, medium intensity
24 1,458.4 0.3 Developed, high intensity
31 348.8 0.1 Barren
41 95,611.4 19.4 Deciduous forest
42 6,879.8 1.4 Evergreen forest
43 3,978.0 0.8 Mixed forest
52 2,664.5 0.5 Shrubland
61 1,149.5 0.2 Cropland reserve program
71 13,999.3 2.8 Grassland herbaceous
81 56,641.8 11.5 Hay
82 36,981.5 7.5 Cultivated crop
90 13,997.6 2.8 Woody wetlands
95 11,543.8 2.3 Herbaceous wetlands
223 701.4 0.1 Spring wheat
236 1,522.0 0.3 Alfalfa
262 24,259.6 4.9 Pasture
301 61,531.7 12.5 Corn/soybean
302 57,784.8 11.8 Soybean/corn
303 9,827.9 2.0 Soybean/corn/corn
304 7,569.6 1.5 Corn/corn/soybean
305 15,652.5 3.2 Continuous corn
306 2,215.2 0.5 Corn/soybean/soybean
307 4,741.9 1.0 Soybean/soybean/corn
308 7,034.4 1.4 Continuous soybean

Figure 2. UMRB land use map (refer table 1 for legend).

fication system, while values larger than 200 use the new crop
rotation types from the CDL.

Soils
For soils, we used the STATSGO (USDA‐NRCS, 1995)

1:250000 scale soil map since the county‐level SSURGO
map was not available for all counties within the UMRB. We
extracted the associated soil properties needed for SWAT di‐
rectly from the national STATSGO layer and distributed them
with ArcSWAT software.

Hydrologic Response Units (HRUs)
HRUs are the basic building blocks of SWAT at which all

landscape processes are computed. The unique combination
of subbasin land use, soil, and slope overlay determine
HRUs. Using the ArcSWAT interface, we overlaid land use,
soil, and slope layers to create a unique combination of HRUs
by subbasin. The slope classes used for this process were 1%
to 2%, 2% to 5%, and 5% and above, resulting in 109,507
HRUs. However, using a threshold operation of 5% for land
use, 10% for soil, and 5% for slope reduced the number of
HRUs to 14,568, and the number of HRUs per HUC ranged
from 58 to 216.

Tile Drainage
Tiles are critical man‐made hydrology structures that

change the natural hydrological cycle significantly at both
surface and subsurface (lateral flow) levels. The tile system
is designed to drain excess water and nutrients in a timely
manner. However, no clear record of tile locations is avail‐
able within the UMRB other than a few research articles at‐
tempting to estimate the location and extent of tile coverage.
In this study, we used values similar to those in the literature
to estimate and identify HRUs with the tile drainage system.
First, we used the STATSGO database to identify very poorly
drained soils, somewhat poorly drained soils, and poorly
drained soils. Since STATSGO is component‐based, one
polygon may contain as many as 21 soil series. Therefore, we
added poorly drained soils by their component percent within
a STATSGO polygon. Candidates for the tile drainage system
included soil polygons with a soil area threshold of 40% or
more. Then, we overlaid slope and land use maps on these
poorly drained soils to identify the potential tile drainage sys‐
tem. HRUs potentially served by the tile drainage system in‐
cluded only those with slopes less than 1% and agricultural
land uses. Figure 3 shows the spatial distribution of potential
tile drainage systems considered for the UMRB modeling ef‐
forts.

Tillage
We obtained county‐level UMRB tillage practice infor‐

mation from the Conservation Technology Information Cen‐
ter (CTIC; www.ctic.purdue.edu/). There are five major
tillage types. Conservation tillage includes no tillage, ridge
tillage, and mulch tillage. On the other hand, non‐
conservation tillage includes reduced tillage and intensive
tillage. We used county acreages to estimate the spatial dis‐
tribution of conservative and non‐conservative tillage per‐
centages for all crops, including corn and soybean. To
estimate the tillage practice percent by crop for each HUC,
we overlaid tillage information on eight‐digit HUCs. When
assigning tillage practices to HRUs, we tried to assign con‐
servation tillage to HRUs with steep slope and non‐
conservation tillage to HRUs with small slope.
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Figure 3. UMRB potential tile drainage map.

Fertilizer and Manure
We used county statistics from the 2002 Census of Agri‐

culture to calculate the number of animals (cattle and hogs)
for each eight‐digit HUC. Then, we multiplied the number of
animals and the manure production rates as outlined in
ASABE Standard D384 (ASABE Standards, 2005) to obtain
the manure production of each eight‐digit HUC. If manure
production exceeded 20% of the estimated total fertilizer ap‐
plication in one HUC, we included manure and chemical fer‐
tilizer applications as SWAT model input in that HUC. Even
during rotation, only HRUs with agricultural land use re‐
ceived manure applications. More specifically, only hay,
corn, and row crops received manure application, not legume
crops such as alfalfa or soybean. Therefore, an HRU classi‐
fied as having a corn and soybean rotation would only receive
manure during corn‐growing periods. Although manure was
applied, we initialized the management file in SWAT with an
auto‐fertilizer operation used to supplement manure applica‐
tions with chemical fertilizer where and when needed. In
HRUs without manure applications, SWAT relied on the
auto‐fertilizer  option as chemical input to allow the agricul‐
tural crops to grow.

Weather
Di Luzio et al (2008) developed a method for constructing

long‐range, large‐area spatiotemporal datasets of daily pre‐
cipitation and temperature (maximum and minimum) by
combining daily observations from the National Climatic
Data Center (NCDC) digital archives with maps from the
Parameter‐Elevation Regressions on Independent Slopes
Model (PRISM). These datasets provide daily precipitation
and temperature values at 2.5 min (around 4 km) resolution

for the years 1960 to 2001. Using their method, we used the
GIS‐based precipitation and temperature interpolation pro‐
gram (Zhang and Srinivasan, 2009) to set up the baseline
model with long‐term historical weather inputs from
1960‐2001. Then, we aggregated the 4 km gridded daily pre‐
cipitation and maximum and minimum temperature to the
eight‐digit subbasins using standard ArcGIS aggregation
procedures. This created 131 weather stations, one for each
HUC subbasin, to input into the SWAT model from
1960‐2001. Although there are several point sources within
the UMRB, this study did not consider them due to their rela‐
tively small overall contribution to flow.

MODEL EVALUATION

The major hydrological budget components evaluated in
this study are actual evapotranspiration (AET), soil moisture
storage, and streamflow. In the recent scientific literature,
these components are also called green water flow, green wa‐
ter storage, and blue water, respectively (Schuol et al., 2008).
Comparing streamflow is relatively straightforward since it
is generally observed with well‐established instrumentation
that produces fewer measurement errors. However, repro‐
ducing green water flow and green water storage with a
hydrologic model is not straightforward in large‐scale wa‐
tersheds because there are not enough monitoring locations.
Furthermore, green water flow and storage cannot be easily
extrapolated from a few site‐specific studies to large wa‐
tersheds. Therefore, we compared model predictions of green
water flow and green water storage with observations at site
locations. Another approach is to compare observed and
modeled crop yield. Crop yield or biomass generally ac‐
counts for both evapotranspiration and soil moisture required
for vegetative growth. Therefore, crop yield can be used as
an alternative for evaluating combined AET and soil mois‐
ture within the hydrological budget. In this study, we
compared uncalibrated SWAT model predictions of stream‐
flow and crop yield with observed data from 11 streamflow
locations and the 14 four‐digit HUC basin level for crop
yield. All the parameters required by SWAT are determined
based on Neitsch et al. (2005). The default values of major
parameters that control water cycle in SWAT are listed in
table 2.

Streamflow
We obtained all monthly and annual streamflow observa‐

tion data for verification from the USGS website (www.u‐
mesc.usgs.gov/data_library/sediment_nutrients/sediment_n
utrient_page.html).  Figure 4 shows the USGS monitoring
station locations that provided observed streamflow data
used in comparisons with SWAT outputs. Table 3 shows the
drainage area estimated by USGS and SWAT and the time pe‐
riod during which observed data were available for compari‐
son with predicted data. The SWAT estimated drainage areas
are within 3% of the basin areas estimated by the USGS
(table�3).  The difference in drainage area is due to the fact
that SWAT estimates its cumulative drainage area based on
HUC outlet location. However, the USGS gauge location
may not always correspond to the outlet of the HUCs. Thus,
there will be some difference between the two areas. In addi‐
tion, table 3 provides the time period of data available for
comparison of streamflow and water quality parameters,
which ranges from 6 to 37 years.
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Table 2. Default values of major parameters in SWAT.

No. Parameter Description
Default
Value[a]

1 CN2 Curve number 25‐92
2 ESCO Soil Evaporation compensation factor 0.85
3 OV_N Manning's coefficient value for overland flow 0.14
4 EPCO Plant evaporation compensation factor 1.0
5 EVLAI Leaf area index at which no evaporation occurs from water surface (m2 m‐2) 3.00
6 SOL_AWC Available soil water capacity (mm H2O mm‐1 soil) 0.01‐0.4
7 Slope Slope steepness (m m‐1) 0.0‐0.24
8 SOL_Kast Soil saturated hydraulic conductivity (mm h‐1) 0.05‐400
9 GW_REVAP Ground water re‐evaporation coefficient 0.02

10 REVAPMN Threshold depth of water in the shallow aquifer for re‐evaporation to occur (mm). 1.0
11 GWQMN Threshold depth of water in the shallow aquifer required for return flow to occur (mm) 1.0
12 GW_DELAY Groundwater delay (days) 31.0
13 ALPHA_BF Base flow recession constant 0.048
14 RCHRG_DP Deep aquifer percolation fraction 0.05
15 GW_SPYLD Specific yield of the shallow aquifer (m3 m‐3) 0.003
16 CH_K2 Effective hydraulic conductivity in main channel alluvium (mm h‐1) 1.0
17 CH_N Manning's coefficient for channel 0.014
18 TIMP Snow pack temperature lag factor 1.00
19 SURLAG Surface runoff lag coefficient (day) 4.0
20 SMTMP Snow melt base temperature (°C) 0.5
21 SFTMP Snowfall temperature (°C) 1.0
22 SMFMX Maximum snowmelt factor for June 21 (mm H2O °C‐1 day‐1) 4.5
23 SMFMN Minimum snowmelt factor for Dec. 21 (mm H2O °C‐1 day‐1) 4.5
24 SNOCOVMX Minimum snow water content that corresponds to 100% snow cover (mm) 1.00
25 SNO50COV Fraction of snow volume represented by SNOCOVMX that corresponds to 50% snow cover 0.5

[a] For CN2, SOL_AWC, Slope, and SOL_Kast, range of values of all HRUs are listed.

Table 3. The drainage area of each monitoring station, the corresponding SWAT
simulated drainage area and the time period of observation data used in this study.

USGS Gauge Location
Eight‐Digit

HUC
SWAT Area

(km2)
USGS Area

(km2)
(SWAT Area)/
(USGS Area)

Time Period
of Validation

05267000 Royalton, Minn. 07010104 30,180 29,696 1.02 1975‐1993
05331000 Hastings, Minn. 07010206 95,940 94,863 1.01 1961‐1997
05330000 Jordan, Minn. 07020012 43,720 43,126 1.01 1980‐1996
05340500 St. Croix Falls, Wisc. 07030005 20,030 19,768 1.01 1976‐1996
05385000 Houston, Minn. 07040008 4,301 4,250 1.01 1991‐1996
05369500 Durand, Wisc. 07050005 24,720 24,338 1.02 1991‐1996
05474500 Keokuk, Iowa 07080104 309,400 304,640 1.02 1975‐1987
05474000 Augusta, Iowa 07080107 11,250 11,016 1.02 1976‐1995
05465500 Wapello, Iowa 07080209 32,800 31,997 1.03 1976‐1995
05586100 Valley City, Ill. 07130011 74,600 73,656 1.01 1991‐1996
05587450 Grafton, Ill. 07110004 447,500 444,185 1.01 1980‐1997

Crop Yield
For the duration of simulation from 1991 to 2001, we ex‐

amined two major crop yields (corn and soybean). The choice
of crops represents the watershed land use map well, and the
temporal selection does a good job of capturing climatic vari‐
ability over the 11 years. It is believed that, starting in the
1990s, the climatic norm began to change with shifting tem‐
perature and precipitation patterns. SWAT‐ simulated crop
yields were compared with county‐level USDA National
Agricultural Statistical Survey (NASS) data obtained for each
year of interest from the NASS website (www.nass.usda.gov/
Data_and_Statistics/Quick_Stats/index.asp).  NASS data are
reported by county, but many counties have missing data.
Thus, we aggregated the data to four‐digit HUCs based on the
area proportion method and compared the results with the ag‐
gregated corn and soybean yields from the SWAT model
baseline run for the same four‐digit HUCs. NASS reports
crop yield in bushel per acre. However, SWAT reports yield

in tons per hectare, so we used the following equation to con‐
vert bushels per acre to tons per hectare:

 

bushel

lbs
2.471
2205

moisture)(1
hectare

tons
acre

bushel
1 ×+×=  (1)

The SWAT model estimates crop yield at 20% moisture
content during harvest time, so in equation 1, moisture is 0.2
and pounds per bushel (lbs/bushel) is 56 for corn and 60 for
soybean, based on standard literature. Hence, for corn, a yield
of 8 tons per hectare would be equivalent to 147 bushels per
acre, and a yield of 10 tons per hectare will be about 183 bush‐
els per acre. More details about the corn and soybean weight
can be found at the following website: www.unc.edu/~row‐
lett/units/scales/bushels.html.
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Figure 4. Locations of USGS monitoring stations used in comparison with
SWAT results.

EVALUATING THE PERFORMANCE OF THE SWAT
PREDICTIONS

Previous studies (e.g., Santhi et al., 2001; Moriasi et al.,
2007) proposed statistics for evaluating calibrated SWAT
performance,  but there are no explicit guidelines for evaluat‐
ing the uncalibrated SWAT model. We investigated two eval‐
uation methods in this study: (1) using evaluation coefficients
proposed in previous studies, and (2) comparing the perfor‐
mance of the uncalibrated SWAT model developed in this re‐
search with models developed in previous work. Following
statistical guidelines set by Santhi et al. (2001) and Moriasi
et al. (2007), the evaluation coefficients for deterministic
predictions include percent bias (PBIAS), coefficient of de‐
termination (R2), and Nash‐Sutcliffe efficiency (NSE).
PBIAS is calculated as:
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where ft is the model simulated value at time t, and yt is the
observed data value at time t (t = 1, 2, ..., T). PBIAS measures
the average tendency of simulated data to be larger or smaller
than the observed counterparts (Gupta et al., 1999). PBIAS
values with small magnitude are preferred. Positive values
indicate model overestimation bias, and negative values indi‐
cate underestimation model bias (Gupta et al., 1999).

The formula for calculating the R2 value is as follows:
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where y  is the mean of observed data values for the entire
evaluation time period, and f  is the mean of simulated data
values for the entire evaluation time period. The other sym‐
bols have the same meanings as defined in the preceding
equation. The R2 value is equal to the square of Pearson's
product‐moment  correlation coefficient (Legates and
McCabe, 1999). It represents the proportion of total variance
in the observed data that can be explained by the model. R2

ranges from 0.0 to 1.0. Higher values equate to better model
performance.

NSE is calculated as follows:
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NSE indicates how well the plot of observed versus simu‐
lated values fits the 1:1 line. It ranges from −∞  to 1 (Nash and
Sutcliffe, 1970), and larger NSE values denote better model
performance.

RESULTS AND DISCUSSION
STREAMFLOW COMPARISON

Tables 4 and 5 show the annual and monthly statistics, re‐
spectively, for the uncalibrated SWAT model at all 11 USGS
gauges. Available data and time period determined the num‐
ber of data points for comparison, as shown in table 3. Tables
4 and 5 include statistical comparisons of long‐term means,
standard deviations, R2, NSE, and PBIAS. The NSE values
range from 0.51 to 0.95 on an annual scale and from ‐0.10 to
0.80 on a monthly scale. The R2 values range from 0.78 to

Table 4. Comparison of simulated and observed annual streamflow at 11 monitoring sites in the UMRB.

USGS
Gauge

Average Standard Deviation

NSE R2 PBIASSimulated Observed Simulated Observed
05267000 166.20 148.16 77.30 56.59 0.55 0.85 12.18
05331000 456.31 427.02 231.79 181.77 0.71 0.86 6.86
05330000 177.07 192.97 130.38 119.57 0.86 0.90 ‐8.24
05340500 165.07 176.26 59.73 51.43 0.72 0.83 ‐6.35
05385000 36.84 37.58 16.86 10.44 0.51 0.93 ‐1.96
05369500 260.05 264.63 37.61 31.07 0.65 0.78 ‐1.73
05474500 2354.65 2214.71 813.37 622.88 0.65 0.85 6.32
05474000 91.18 90.16 59.58 56.58 0.95 0.95 1.13
05465500 250.10 277.73 168.27 169.52 0.92 0.95 ‐9.95
05586100 705.28 882.70 346.04 312.10 0.64 0.98 ‐20.10
05587450 3206.07 3374.88 1220.56 1029.89 0.80 0.88 ‐5.00
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Table 5. Comparison of simulated and observed monthly streamflow at 11 monitoring sites in the UMRB.

USGS
Gauge

Average Standard Deviation

NSE R2 PBIASSimulated Observed Simulated Observed
05267000 165.37 149.04 149.49 110.14 ‐0.10 0.42 10.96
05331000 454.82 427.27 448.75 382.99 0.34 0.54 6.45
05330000 180.56 200.29 228.62 228.46 0.48 0.56 ‐9.85
05340500 164.70 176.58 120.09 125.27 0.11 0.29 ‐6.73
05385000 36.98 37.50 29.45 23.79 0.20 0.49 ‐1.40
05369500 263.84 266.11 157.41 140.55 0.06 0.34 ‐0.86
05474500 2346.73 2205.19 1543.52 1239.83 0.14 0.47 6.42
05474000 91.03 89.49 98.27 103.09 0.80 0.81 1.73
05465500 249.60 275.37 260.05 270.39 0.78 0.80 ‐9.36
05586100 674.20 869.72 626.21 552.80 0.48 0.69 ‐22.48
05587450 3204.26 3311.38 2262.37 2054.29 0.50 0.60 ‐3.23

0.99 on an annual scale and from 0.29 to 0.81 on a monthly
scale. PBIAS values are less than 10% for 10 out of the total 11
monitoring sites for both annual and monthly comparisons.

In order to save space, two USGS gauges, one (05587450)
with the largest drainage area and another (05586100) with
the largest PBIAS, were used to exemplify the process of il‐
lustrating simulated and observed streamflow. The simulated
and observed streamflow at these two gauges is shown in fig‐
ure 5 (annual) and figure 6 (monthly).

It is worth noting that, on average, the evaluation coeffi‐
cients are less on a monthly temporal scale than an annual
scale, which may be attributable to one or more of the follow‐
ing factors: snowmelt simulation, seasonal variation in ET
and soil moisture conditions, or operation of large reservoirs.
By not accounting for all UMRB dams and reservoirs, the ac‐
curacy of simulated monthly streamflow variation was di‐
minished. There are over 3,000 reservoirs in the basin. Their
flood storage volume of about 49 billion m3 would take over
three months to flow past St. Louis, Missouri, at average dis‐
charge rates (www.umrba.org/facts.htm). In this study, we
only added the 15 major reservoirs, which account for about
46% (23 billion m3) of the total storage volume (49 billion
m3) on the main stream (as shown in fig. 4) to the SWAT simu‐
lation. It would be worthwhile to collect and compile infor-
mation about all reservoirs and dams within the UMRB to

Figure 5. Simulated and observed annual streamflow at two USGS gauges
(05586100 and 05587450).

further improve monthly streamflow simulations. Overall,
the uncalibrated model compared very well at an annual tem‐
poral scale across all 11 monitoring sites, which indicates that
SWAT can adequately produce long‐term water yield in un‐
gauged meso‐scale and large‐scale basins, given the input
data developed in this study. Again, for further improvements
in monthly streamflow, more detailed information (e.g., res‐
ervoirs, dams, and irrigation) needs to be collected.

The streamflow observed at monitoring gauges is com‐
posed of combined contributions from surface water and base
flow. The mechanisms controlling these two processes are
very different from one another. In order to test different land
use practices on a watershed's hydrologic budget, a model
should be able to realistically simulate contributions from
surface flow and base flow (Arnold et al., 2000). There are no
observed base‐flow data available for the entire UMRB.
Therefore, to evaluate SWAT's ability to simulate base‐flow
contribution,  we used the base‐flow ratio estimated by Ar‐
nold et al. (2000), which uses the base‐flow filter method (Ar‐
nold et al., 1995). The average observed total flow and
estimated base‐flow depths from 1961 to 1980 are listed in
table 6. These results indicate that the uncalibrated SWAT
model can estimate the contribution from base flow well.

Figure 6. Simulated and observed monthly streamflow at two USGS
gauges (05586100 and 05587450).
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Figure 7. Comparison between SWAT‐simulated and NASS‐observed
corn yield at the four‐digit HUC level in the UMRB.

Table 6. Evaluation of base‐flow contribution to total flow.

Methods

Total
Flow
(mm)

Base
Flow
(mm)

Base Flow
Fraction

(%)

Base‐flow filter and USGS gauges 207 83 40
SWAT by Arnold et al. (2000) 192 80 42
SWAT in this study 218 98 45

In general, the SWAT model developed in this study pro‐
vides a good baseline model for use in various analysis sce‐
narios without any user bias. In addition, this study validates
how well spatially distributed models are able to produce ac‐
ceptable results using readily available, physically based in‐
put parameters in watersheds ranging from small to very
large. Given further information about the watershed's physi‐
ographic characteristics, we expect that better simulation re‐
sults would be obtained, especially on a monthly temporal
scale.

Figure 8. Comparison between SWAT‐simulated and NASS‐observed
soybean yield at the four‐digit HUC level in the UMRB.

CROP YIELD ANALYSIS

Differences between SWAT and NASS yields are present‐
ed in figure 7 for corn and in figure 8 for soybean for each
four‐digit HUC in the UMRB. As exhibited in these figures
and in tables 7 and 8, the SWAT model predicts observed
yield well with a small PBIAS, which is defined as:

 
( )

yieldobservedNASS
yieldpredictedSWATyieldobservedNASS -

 (5)

However, in HUC regions 0711 and 0714, SWAT predic‐
tions are higher than USDA‐NASS reported yields. This
could be because SWAT was configured for a baseline run.
For example, SWAT uses STATSGO soils, which represent a
large area. Thus, SWAT may potentially be using a better,
more productive soil set than what is actually in the wa‐
tershed. In addition, SWAT does not handle pest impact or ex‐
treme flooding situations well. Therefore, SWAT‐estimated
yields represent the typical or potential yield.

Table 7. Analysis of SWAT‐simulated and NASS‐observed corn yield at the four‐digit HUC level for the time period 1991 to 2001.

Four‐Digit
HUC

Average (tons ha‐1) Standard Deviation (tons ha‐1) Range (tons ha‐1) PBIAS
(%)Observed Simulated Observed Simulated Observed Simulated

0701 6.27 7.01 0.74 0.96 4.85‐7.26 5.46‐9.16 12
0702 7.12 7.62 0.67 0.99 6.26‐8.08 5.67‐9.50 7
0703 5.96 6.56 0.73 0.69 4.50‐6.78 5.63‐8.16 10
0704 7.15 7.07 0.76 0.90 5.69‐8.26 5.73‐8.77 ‐1
0705 6.27 6.93 0.71 0.53 4.51‐7.06 6.32‐8.10 11
0706 7.33 7.22 0.60 0.64 6.31‐8.04 6.47‐8.30 ‐1
0707 6.50 7.05 0.65 0.52 5.48‐7.51 6.40‐8.08 8
0708 7.39 7.43 0.64 0.73 5.97‐8.03 6.07‐8.60 1
0709 7.19 7.22 0.71 0.70 5.99‐8.11 6.16‐8.51 0
0710 7.38 7.89 0.57 0.89 6.06‐8.18 6.17‐9.29 7
0711 6.38 8.18 0.95 1.34 4.71‐8.30 5.43‐9.86 28
0712 6.87 7.24 1.13 0.91 4.06‐8.18 5.41‐8.52 5
0713 7.65 7.85 0.79 1.08 6.19‐8.74 5.72‐9.52 3
0714 6.53 8.27 0.86 1.13 5.28‐7.67 5.79‐9.91 27
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Table 8. Analysis of SWAT‐simulated and NASS‐observed soybean yield at the four‐digit HUC level for the time period 1991 to 2001.

Four‐Digit
HUC

Average (tons ha‐1) Standard Deviation (tons ha‐1) Range (tons ha‐1) PBIAS
(%)Observed Simulated Observed Simulated Observed Simulated

0701 2.02 1.94 0.30 0.13 1.41‐2.40 1.62‐2.07 ‐4
0702 2.13 2.08 0.31 0.19 1.29‐2.42 1.55‐2.23 ‐2
0703 1.79 1.82 0.27 0.10 1.24‐2.19 1.58‐1.95 2
0704 2.28 1.92 0.33 0.18 1.62‐2.67 1.46‐2.15 ‐16
0705 1.99 1.79 0.27 0.23 1.35‐2.34 1.27‐2.02 ‐10
0706 2.56 2.02 0.29 0.17 1.84‐2.90 1.64‐2.28 ‐21
0707 2.28 1.93 0.27 0.14 1.73‐2.67 1.64‐2.17 ‐15
0708 2.52 2.06 0.25 0.18 1.86‐2.85 1.59‐2.24 ‐18
0709 2.55 1.95 0.20 0.15 2.32‐2.93 1.55‐2.16 ‐23
0710 2.35 2.20 0.31 0.20 1.50‐2.74 1.65‐2.41 ‐6
0711 2.07 2.34 0.24 0.23 1.47‐2.40 1.92‐2.64 14
0712 2.35 2.00 0.24 0.15 1.77‐2.65 1.70‐2.24 ‐15
0713 2.55 2.16 0.11 0.23 2.34‐2.72 1.76‐2.52 ‐15
0714 2.07 2.36 0.16 0.21 1.78‐2.29 1.90‐2.64 14

Furthermore, we compared SWAT and NASS yields on an
annual basis. To illustrate, we present two best and two poorly
predicted four‐digit HUCs in figure 9 for corn and in figure
10 for soybean. Figure 9 shows the annual comparison of pre‐
dicted and observed corn yield in four‐digit HUCs 0708 and
0714 for the years 1991‐2001, except the year of 1993. Figure
10 shows the annual comparison of predicted and observed
soybean yield in four‐digit HUCs 7020 and 0709 for the years
1991‐2001, except the year of 1993. One of the worst years
for crop production was 1993 due to extended periods of
flooding in the UMRB. Therefore, SWAT's prediction was
significantly higher than the USDA‐NASS reported yield be‐
cause SWAT did not capture the extended flooding and height
of the crops under flood conditions. It is worth noting that
SWAT cannot capture annual variation in crop yields very
well. For example, in four‐digit HUC 0708, SWAT predicted
higher corn yield in 1997 than 1996, while the NASS ob‐
served data indicated the reverse. Another example is in four‐
digit HUC 0709 where SWAT predicted lower soybean yield
in 1998 than in 1997 and 1999, while NASS observed the
highest soybean yield in 1998. One main reason for these in‐
consistencies is the lack of information on management prac‐
tices at the farm scale (e.g., tillage, fertilizer and manure
application).  In the model, we must assign tillage practices
according to the tillage area percentage within one eight‐digit
HUC and use the fertilizer auto‐application. These estimated
management practices may not reflect actual farm‐scale con‐
ditions. In previous studies (e.g., Thomson et al., 2005) that
applied the Erosion Productivity Impact Calculator (EPIC),
which uses a plant growth module similar to SWAT's, re‐
searchers usually used average, multi‐year crop yields to
evaluate model performance because of the difficulties in
collecting detailed crop management practices. Overall, the
crop yield validation results are satisfactory considering the
uncalibrated nature of this study. Another advantage of the
uncalibrated model is its extendibility to other various stud‐
ies, such as the potential expansion of corn production for
biofuels or the combined effects of climate change on biofuel
production on a large scale.

From the above analysis, SWAT, in general, is able to pre‐
dict crop yield satisfactorily over the long‐term average for
most four‐digit HUCs, with PBIAS values less than 15%.
However, it is worth noting that the PBIAS values can be larg‐
er than 20% for several four‐digit HUCs (tables 7 and 8). Fur‐
ther information on crop management (e.g., fertilizer, tillage,
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Figure 9. Annual comparison of SWAT‐simulated and NASS‐observed
corn yield for the period 1991 to 2001 for two HUCs (0708 and 0714).
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Figure 10. Annual comparison of SWAT‐simulated and NASS‐observed
soybean yield for the period 1991 to 2001 for two HUCs (0702 and 0709).
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Table 9. Comparison of annual and monthly streamflow simulations between two SWAT models at USGS gauge 05587450 near Grafton, Illinois.
PBIAS R2 NSE

Jha et al.
(2004)

This
study

Jha et al.
(2004)

This
study

Jha et al.
(2004)

This
study

Calibration
(1989‐1997)

Annual N/A ‐9.1 0.91 0.97 0.91 0.90
Monthly N/A ‐9.1 0.75 0.75 0.67 0.74

Validation
(1980‐1988)

Annual N/A ‐4.5 0.89 0.93 0.86 0.81
Monthly N/A ‐4.6 0.70 0.58 0.57 0.69

and harvest) may improve SWAT's performance for those
HUCs. Since crop growth depends on properly predicting
AET and soil moisture storage, one could extend the validity
and confidence in the model prediction of AET and soil mois‐
ture using a well‐compared model on crop yield. Arnold and
Allen (1996) discussed the application of SWAT for estimat‐
ing AET in three small watersheds in Illinois (Goose Creek,
Hadley Creek, and Panther Creek). Their results indicated
that SWAT can produce AET values that are very similar to
those observed in the 1950s. The Goose Creek, Hadley
Creek, and Panther Creek watersheds are located in eight‐
digit HUCs 07130006, 07110004, and 07130004, respective‐
ly. Due to the space and time mismatch (1950s vs.
1961‐2001) and the small area (122 to 250 km2) of the three
watersheds vs. the large area (3018 to 5156 km2) of the three
HUCs, we cannot directly use the observed AET at these
three small watersheds to evaluate SWAT performance.
However, we expect that the simulated and observed AET
values are similar to one another. The average simulated AET
values from 1961‐2001 are 624 mm (with a range of 548 to
689 mm) in 07130006, 688 mm (with a range of 633 to
747�mm) in 07110004, and 649 mm (with a range of 566 to
712 mm) in 07130004. These values match well with the ob‐
served AET values of 617 mm in Goose Creek, 627 mm in
Hadley Creek, and 608 mm in Panther Creek, having less
than 10% deviation. To some extent, the comparison results
indicate that SWAT produced the AET values with reason‐
able success. Hence, the uncalibrated SWAT model, with its
crop growth component, could prove to be instrumental in
developing long‐term strategies concerning hydrologic bud‐
gets and crop and vegetative biomass yield for strategic bio‐
fuel production planning.

COMPARISON WITH PREVIOUS APPLICATIONS OF SWAT IN
THE UMRB

Several SWAT model applications have been developed
for the UMRB. In this study, we compare the performance of
the uncalibrated SWAT model developed in this study to oth‐
er SWAT models developed in previous studies. Arnold et al.
(2000) created a UMRB‐scale SWAT model that was shown
to successfully simulate monthly streamflow with R2 values
larger than 0.6 at Alton, Illinois. Jha et al. (2004) calibrated
SWAT for streamflow simulation in the UMRB using month‐
ly and annual streamflow data from the USGS gauge near
Grafton, Illinois. Wu and Tanaka (2005) evaluated a SWAT
model using monthly average streamflow with data from a
USGS gauge station near Grafton, Illinois. Their results
showed that the difference between simulated and observed
average monthly streamflow values (1980‐1999) was less
than 5%. Because the difference between the drainage areas
of USGS gauges at Grafton and Alton is very small (443,667
vs. 442,185 km2), we used the evaluation coefficients ob‐
tained at Grafton, Illinois, in comparisons between the three

SWAT studies. Because the three SWAT models use different
time periods for model calibration and validation, we compared
them separately. Compared with Wu and Tanaka (2005), the
PBIAS of the average monthly streamflow simulation from
1980‐1997 is less than 5% (‐3.23%). Using monthly flow from
1981‐1985, Arnold et al. (2000) obtained an R2 value of 0.65
and a PBIAS of ‐15.09%, which compare to an R2 of 0.58 and
a PBIAS of 2% calculated using the simulated results in this
study. In general, the evaluation coefficients obtained in this
study are similar to those reported by Arnold et al. (2000) and
Wu and Tanaka (2005), who used calibrated SWAT models. Our
comparison between this research and the results of Jha et al.
(2004) is illustrated in table�9. Annual and monthly streamflow
data for the same time period (1980‐1997) were available, al‐
lowing us to calculate evaluation coefficients for both studies.
All annual streamflow simulation R2 and NSE values are greater
than 0.8. For monthly streamflow simulation, this study ob‐
tained a greater NSE value than Jha et al. (2004) (0.74 vs. 0.67)
during the calibration period. During the validation period, Jha
et al. (2004) obtained a greater R2 value (0.70 vs. 0.58), but this
study obtained a greater NSE value (0.69 vs. 0.57). Overall, the
uncalibrated SWAT model performed similarly to the calibrated
SWAT model of Jha et al. (2004) in terms of R2 and NSE.

The above results indicate that the uncalibrated SWAT
model's performance is comparable to calibrated SWAT
models used in previous studies. One major difference be‐
tween the SWAT model developed in this study and those de‐
veloped in previous research lies in the input data. Although
all four SWAT models used eight‐digit HUCs and STATSGO
soil maps, the DEM, land use map, climate input data, and
management  practices are different from one another. Since
we do not have access to the SWAT project files from other
studies, a detailed comparison between the input data and de‐
rived parameters (e.g., slope, elevation, land use, precipita‐
tion, temperature, tillage, and fertilizer) cannot be
completed.  In the future, the effect of input data on SWAT
simulation should be further explored.

UMRB BIOMASS AVAILABILITY

In the current energy debate, renewable, clean energy de‐
rived from plant biomass is a major potential commodity. The
UMRB contains some of the most fertile land in the U.S. We
extended this study to estimate potential annual biomass pro‐
duction for the entire UMRB by converting all arable crop
lands into fields of switchgrass. The SWAT model has the
ability to simulate various bioenergy crops. Switchgrass was
chosen as one of the most promising bioenergy crops for both
cellulose and biomass process‐based biofuel production.
Hence, all agricultural fields were modified from the typical
corn and soybean rotations to switchgrass. Figure 11 shows
the average biomass production results for each eight‐digit
HUC in the UMRB. The 41‐year, average yield for the entire
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Figure 11. Average annual SWAT simulated Switchgrass yield at the
eight‐digit HUC level in the UMRB.

basin is 17.44 tons per hectare, and individual eight‐digit
HUCs vary from 8.6 to 33.9 tons per hectare, showing tre‐
mendous variability in biomass production. Thus, the model
can help identify high‐yielding areas as potential biofuel pro‐
duction facility locations to reduce the cost of hauling and
transport. These yield ranges are very similar to those ob‐
served in field trails throughout the Midwest as described by
Dr. Jim Kiniry, research agronomist with the USDA‐ARS in
Temple, Texas. The overall average, annual estimated pro‐
duction of switchgrass energy crop within the UMRB is
0.38�billion tons. This provides a good estimate for energy
production capabilities and informs policy makers of biofuel
production potential within the UMRB in lieu of grain pro‐
duction. In addition, figure 11 provides a very good spatial
pattern for high‐yielding bioenergy crop production sites,
which is not much different from that of high‐yielding grain
crops. However, the figure also shows the spatial location of
marginal lands that could potentially be used for renewable
energy production.

CONCLUSIONS
Scientists and planners have been using physically based,

distributed hydrologic models increasingly for the assess‐
ment of water resources, best management practices, and cli‐
mate and land use changes. Our research involved the
application of the physically based, spatially distributed
SWAT model for hydrologic budget and crop yield predic‐
tions from an ungauged perspective. We proposed a frame‐
work for developing spatial input data, including
hydrography, terrain, land use, soil, tile, weather, and man‐

agement practices, for SWAT in the UMRB and tested the un‐
calibrated SWAT model for streamflow, base flow, and crop
yield simulation. We used annual and monthly streamflow
from 11 USGS monitoring gauges to test SWAT, and found
that SWAT can capture the amount and variability of annual
streamflow very well (PBIAS is less than 10% for 11 monitor‐
ing stations, R2 values range between 0.78 and 0.99, and NSE
ranges between 0.51 and 0.95). For monthly streamflow sim‐
ulation, the performance of SWAT is slightly degraded (R2

values range from ‐0.10 to 0.80, and NSE ranges between
0.29 and 0.81), which may be mainly attributed to incomplete
information about the reservoirs and dams within the UMRB.
Further validation indicates that the simulated base‐flow
contribution ratio (BFR) of 45.1% is very close to the filtered
BFR of 40% calculated by Arnold et al. (2000). At the four‐
digit HUC scale, SWAT can predict corn and soybean yields
well (PBIAS is less than 20% for 11 out of 14 four‐digit HUCs
for both corn and soybean). In addition, the uncalibrated
SWAT model developed in this study produced similar evalu‐
ation statistics to those calculated using calibrated SWAT
models from three previous studies. Overall, the SWAT mod‐
el can satisfactorily predict the UMRB hydrologic budget
and crop yield without calibration. This makes it a readily ex‐
tendible SWAT model for assessing the consequences of
management  practices and predicting the effects of climate
and land use changes such as biofuel crop and biomass pro‐
duction. The results emphasize the importance and prospects
of using accurate spatial input data for the physically based
SWAT model. Furthermore, we extended the study to assess
total UMRB biofuel energy crop production by converting all
agricultural  land into switchgrass production. The UMRB
has the potential to produce 0.38 billion tons of biomass per
year, with an average production of 17.44 tons per hectare.
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