"Modelling vulnerability of coastal ecosystems to land-based mining pollution: a case study from Brazil"

By Rafael A. Magris, Natalie C. Ban, Jose Monteiro

Mining in Brazil is a significant primary industry

Production forecast for several selected minerals: The 2030 National Mining Plan

Product	Un.	2008	2015	2022	2030
Iron Ore	Mt	351	585	795	1,098
Gold	t	55	120	180	200
Bauxite	Mt	26.8	42.3	56.7	79.3

Mining in Brazil is a significant primary industry

Production forecast for several selected minerals: The 2030 National Mining Plan

Product	Un.	2008	2015	2022	2030
Iron Ore	Mt	351	585	795	1,098
Gold	t	55	120	180	200
Bauxite	Mt	26.8	42.3	56.7	79.3

Iron and associated metals

58% of revenue from mining

Environmental impacts of mining

1. Physical loss of habitat

Environmental impacts of mining

2. Disposal of mine wastes

Environmental impacts of mining

3. Post-mining impacts

Physical loss of habitat

Segura et al. 2016

Kossoff et al. 2014

Flooding

Segura et al. 2016

Pollution: Sediments and heavy metals

Kossoff et al. 2014

Failure events over time

Failure events over time

#Seismic

Aims of this study

1. Develop a vulnerability model of coastal ecosystems to potential disturbances associated with dam collapse events

 Provide some evidence for on-ground conservation practices or policies such as identifying tailing dams with increased potential to impact

rea

Study Area

87,400 km²

56,500 km²

Study Area

Study Area

Exposure component

Sensitivity component

Exposure component

Hydrological modelling: end-of-river loads

SuspendedMetals:sedimentAl and Fe

Sensitivity component

Exposure component

Hydrological modelling: end-of-river loads

SuspendedMetals:sedimentAl and Fe

Coastal transport modelling Potential areas of sedimentation = Expected exposure

Sensitivity component

Potential areas of sedimentation = Expected exposure

Baseline scenario: Doce River

Time (monthly)

Baseline scenario: Paraiba do Sul River

Point source of pollution

> Dam-collapse scenarios: 8 largest dams

Dam-collapse scenarios: sediment export increase and concentrations at river mouth (post-disturbance)

Dam-collapse scenarios: sediment export increase and concentrations at river mouth (post-disturbance)

Stage of analysis

1. SWAT parameterisation SWAT calibration and validation 2. Oceanic dispersal model 3. 4. Ecosystem mapping 5. Meta-analysis - review

Current challenges – Advises

- 1. Calibration for discharge impact of reservoirs
- 2. Calibration for sediments impacts of reservoirs
- 3. Simulation of heavy metals dispersal

Thank you!

Email: rafael.magris@icmbio.gov.br

