

DEPARTMENT OF HYDROLOGY AND HYDRAULIC ENGINEERING

### An adaptation to the vegetation growth module of SWAT for tropical condition

Alemayehu T, van Griensven A and Bauwens W

June 29, 2017

#### Motivation

The Soil and Water Assessment Tool (SWAT):

- One of the most widely applied eco-hydrological models in the tropics and elsewhere.
- However, the vegetation growth module is not suitable for simulating the Leaf Area Index (LAI) dynamics for trees and perennials in the tropics.

**Temperature vs Rainfall (via soil moisture)** 

## Only few studies address the growth cycle limitations



Parameter adjustment /Shifting dormancy /Soil moisture

### Soil moisture Index (SMI) can be a trigger for new growth cycle



 $SMI = \frac{\sum_{i=1}^{N} P}{\sum_{i=1}^{N} PET}$ 

# Modifying SWAT vegetation module for tropics (SWAT-T)

- For HRU located between 20<sup>o</sup> N and 20<sup>o</sup> S:
  - If the simulation day is within SOS<sub>1</sub> and SOS<sub>2</sub>, the SMI is calculated as the ratio of P to PET.
  - If the SMI exceeds or equals 0.5, a new growing cycle for trees and perennials is initiated.
  - In case the SMI is still below the threshold (i.e. 0.5) at the end of SOS<sub>2</sub>, a new growing cycle is initiated immediately after the last date of SOS<sub>2</sub>.
- For HRU located outside 20<sup>o</sup> N and 20<sup>o</sup> S:
  - Default plant growth

#### Application to the Mara Basin

Study area overview

Basin area : 13400 km<sup>2</sup>

Annual rainfall: 600-1750 mm

Temperature: 25-28 °c

Dominant soils: Andosols & Planosols

Dominant cover : Grassland



#### Mara SWAT-T model

- Spatial input:  $\rightarrow$  30m SRTM DEM  $\rightarrow$  Africover map  $\rightarrow$  HWSD soil map
- Model:  $\rightarrow$  89 sub-basins  $\rightarrow$  1500 HRUs
- Forcing:  $\rightarrow$  bias-corrected satellite rainfall  $\rightarrow$  PM based PET using GLDAS weather data

#### Calibration and evaluation approach

- Selected SWAT parameters related to vegetation growth, ET and streamflow are calibrated manually
- Calibration (evaluation) period:2002-2005 (2006-2009)
- Evaluation data: i) 8-day MODIS LAI
  ii) 8-day SSEBop ET→ thermal-based ET
  iii) daily streamflow
- Performance evaluation: KGE, r and pbias

#### **Performance of the LAI simulation**



|       | Calibration ( | Validation) |             |             |
|-------|---------------|-------------|-------------|-------------|
|       | FRSE          | Теа         | RNGE        | RNGB        |
| r     | 0.94 (0.93)   | 0.83 (0.83) | 0.89 (0.86) | 0.92 (0.88) |
| %bias | 1.5 (0)       | 0.1 (0.2)   | -3.7 (-0.4) | -1.3 (4.6)  |
| KGE   | 0.50 (0.62)   | 0.42 (0.44) | 0.86 (0.85) | 0.88 (0.86) |

### The seasonal vegetation growth pattern



There is a good match in average monthly LAI from MODIS and SWAT-T

### ET simulation skill



| <b>Calibration (Validation)</b> |             |             |  |  |
|---------------------------------|-------------|-------------|--|--|
|                                 | FRSE        | RNGE        |  |  |
| r                               | 0.71 (0.68) | 0.72 (0.77) |  |  |
| %bias                           | 3.7 (6.6)   | 7.8 (11)    |  |  |
| KGE                             | 0.71 (0.67) | 0.69 (0.74) |  |  |

### Spatial ET and LAI simulation for dry and wet months



#### Streamflow simulation



| Calibration (Validation) |             |  |  |  |
|--------------------------|-------------|--|--|--|
| r                        | 0.72 (0.76) |  |  |  |
| %bias                    | 3.5 (15.5)  |  |  |  |
| KGE                      | 0.71 (0.71) |  |  |  |

#### Conclusions

- The SMI can be a reliable new growth cycle trigger annually.
- The SWAT-T model simulated LAI compared well with smoothed MODIS LAI at 8-day.
- The model simulated the water balance components with fair statistical measures.
- The proposed vegetation growth module can be a robust tool for simulating the vegetation growth cycle else where in the tropics.

#### Thank you