IMPACT OF CLIMATE CHANGE OVER THE ARABIAN PENINSULA

By: Talal Alharbi

June, 29 2017

Motivation:

- In arid and semi-arid regions of the world the demand for fresh water resources is increasing due to:
 - increasing populations, and
 - scarcity of fresh water supplies.
- These areas are the most affected by climate change.
- Among others, climate change could affect precipitation patterns and magnitudes.

Objectives:

Provide remote sensing-based solutions for hydrologic issues in the Arabian Peninsula.

- Change in patterns and magnitudes of precipitation (climate change-related?)
- Partitioning of precipitation over Red Sea Hills watersheds.

Data & Objectives :

PHASE I:

Identify the spatial and temporal climate change-related variations in precipitation over the AP.

PHASE II:

Quantify the partitioning of precipitation into recharge, runoff, and initial losses.

REMOTE SENSING DATA

Methods & Objectives :

Integrated Approach

PHASE I:

Identify the spatial and temporal climate change-related variations in precipitation over the AP.

PHASE II:

Quantify the partitioning of precipitation into recharge, runoff, and initial losses.

Arabian Peninsula: Geology

- The AP is divided into two major regions—the Arabian Shield and the Arabian Shelf.
- The Arabian Shield, a complex of igneous and metamorphic rocks of Precambrian age, occupies the western third of the AP.
- The Arabian Shelf is composed of Paleozoic, Mesozoic, and lower Tertiary strata exposed in central Arabia, and crops out along a curved belt bordering the Shield.

Arabian Peninsula: Climate (1)

- Temperatures in AP are high in summer and in some places can reach more than 50°C (122°F).
- The annual rainfall averages in the AP from less than 50 mm to 250 mm but could reach up to 750 mm in the southwest corner of the AP.

Arabian Peninsula: Climate (2)

- Precipitation in the AP is controlled by two main wind regimes.
 - Monsoon winds in the summer season (April to September).
 - Westerly winds in the winter season (October to March).

PHASE I:

Identify the spatial and temporal climate change-related variations in precipitation over the AP.

PHASE II:

Quantify the partitioning of precipitation into recharge, runoff, and initial losses.

Phase I:

• Goal:

 Identify the spatial and temporal climate change-related variations in precipitation over the AP.

• Data:

- Climate Prediction Centers (CPC) Merged Analysis of Precipitation (CMAP).
- provides global coverage 2.5° × 2.5° monthly precipitation datasets based on gauge data and satellite-derived 1979 to 2011.

• Methods:

Trends in rainfall over two seasons through two different periods.

Precipitation Patterns: Two Seasons

Average annual precipitation during the winter (October – March) season.

Average annual precipitation during the summer (April – September) season

Precipitation Patterns: Two Periods

1979-1995

Trend (mm/yr) generated from CMAP-derived annual rainfall data that span the period from January 1979 through December 1995.

1996-2010

Trend (mm/yr) generated from CMAP-derived annual rainfall data that span the period from January 1996 through December 2010.

Winter

Yearly

Trends in Rainfall

Phase I: Conclusions

- Global warming and/or multiyear variability related to ocean teleconnections can influence sea and land surface temperatures, which in turn affect precipitation rates and patterns.
- Monsoonal wind regimes-resulted precipitation patterns dominate the period from 1979-1995 and make up the bulk of the precipitation over the AP.
- Westerly wind regimes-resulted precipitation patterns dominate the period from 1996-2010 and make up the bulk of the precipitation over the AP.

PHASE I:

Identify the spatial and temporal climate change-related variations in precipitation over the AP.

PHASE II:

Quantify the partitioning of precipitation into recharge, runoff, and initial losses.

Phase II:

- Goal:
 - Quantify the partitioning of precipitation into recharge, runoff, and initial losses.

• Methods:

- Soil and Water Assessment Tool (SWAT).
 - Continuous model.
 - Public domain and GIS friendly.
 - Open source code developed and supported by USDA.
 - Computes several hydrologic variables.

SWAT

Inputs:

- Precipitation
- Topography
- Geology/Soil
- Landuse
- Meteorological datasets (solar radiation, air temperature, relative humidity, and wind speed)
- Other Parameters

Source: SWAT documentation

Outputs:

- Recharge
- Evapotranspitration
- Evaporation
- Infiltration
- Overland flow
- Runoff

SWAT Inputs:

SWAT Rainfall Inputs:

- CMAP data:
 - Temporal Resolution: Monthly
 - Spatial Resolution: 2.5° × 2.5°
 - Temporal coverage: 1979-2011
- TRMM data:
 - Temporal Resolution: 3 hr
 - Spatial Resolution: 0.25° × 0.25°
 - Temporal coverage: 1998-Present

CMAP/TRMM comparison:

107769 Km² (Wadi Al-Hemdh)

```
1825 Km<sup>2</sup> (Wadi Halyah)
```


- 1. Wadi Al-Hemdh
- 2. Wadi Yanbu An-Nakhl
- 3. Wadi Rabigh
- 4. Wadi Khulays
- 5. Wadi Haly
- 6. Wadi Fatimah
- 7. Wadi Ifal

8. Wadi Thalbah 9. Wadi Masturah 10. Wadi Damah 11. Wadi Al-Lith 12. Wadi Al-Lith 13. Wadi Al-Safra 14. Wadi As Sughu 15. Wadi Numan 16. Wadi Qanunah 17. Wadi Qidayd 18. Wadi Shiqri 19. Wadi Halyah G. Wadi Girafi

21

11. Wadi Al-Lith

12. Wadi Yabah

13. Wadi Al-Safra

4. Wadi Khulays

6. Wadi Fatimah

5. Wadi Haly

7. Wadi Ifal

17. Wadi Qidayd

18. Wadi Shiqri

19. Wadi Halyah 22

1998-2010

33% of rainfall (Wadi Al-Hemdh)

<1% of the rainfall (Wadi Qidayd)

40°0'0"E

Stream Flow (%)

35°0'0"E

1. Wadi Al-Hemdh	8. Wadi Thalbah
2. Wadi Yanbu An-Nakhl	9. Wadi Masturah
3. Wadi Rabigh	10. Wadi Damah
4. Wadi Khulays	11. Wadi Al-Lith
5. Wadi Haly	12. Wadi Yabah
6. Wadi Fatimah	13. Wadi Al-Safra
7. Wadi Ifal	

14. Wadi As Sughu 15. Wadi Numan 16. Wadi Qanunah 17. Wadi Qidayd 18. Wadi Shiqri 19. Wadi Halyah 23

SWAT Results (3):

1998-2010

40% of rainfall (Wadis Haly, Yabah, and Qanunah)

<1% of the rainfall (Wadi Shiqri)

1. Wadi Al-Hemdh	8. Wadi Thalbah	14. Wadi As Sughu
2. Wadi Yanbu An-Nakhl	9. Wadi Masturah	15. Wadi Numan
3. Wadi Rabigh	10. Wadi Damah	16. Wadi Qanunah 17. Wadi Qidayd 18. Wadi Shiqri
4. Wadi Khulays	11. Wadi Al-Lith	
5. Wadi Haly	12. Wadi Yabah	
6. Wadi Fatimah	13. Wadi Al-Safra	19. Wadi Halvak ²⁴
7. Wadi Ifal		

Phase II: Conclusions

- CMAP data is highly correlated with TRMM data,
- Increasing the proportion of areas occupied by basement and/or increasing precipitation amounts increases the proportion of stream flow,
- The larger the amount of precipitation and the runoff, the greater the amount of transmission losses and potential recharge.

Thank You