Development of the Nemunas River watershed model for hydrology, sediment and nutrient calculations

<u>Natalja Čerkasova</u>, Georg Umgiesser, Ali Ertürk Klaipėda University, Lithuania

International SWAT Conference in Warsaw, Poland June 29th, 2017

Case study

Watershed area: 100 458 km²

Shared by: Lithuania: 46 % Belarus: 48 % Poland: 2.57 % Russian Federation Kaliningrad Oblast: 3.34 % Latvia: 0.09 %

Case study

Drains into Curonian Lagoon;

Provides up to 98% of inflow (in terms of flow rates and nutrient inputs)

Context

- HELCOM Baltic Sea Action Plan (BSAP) achieve GES by 2021!
- Dealing with:
 - Eutrophication;
 - Biodiversity;
 - Hazardous substances;
 - Marine activities;
- Nutrient Reduction Scheme
 - Some countries achieved reduction levels;
 - Lithuania on the way...
 (long, long way)

Country Allocated Reduction Targets (CARTs) for pollution from both land and air, in tonnes, agreed in 2013

	Nitrogen	Phosphorus
Denmark	2,890	38
Estonia	1,800	320
Finland	2,430 +600*	330 +26*
Germany	7,170 +500*	110 +60*
Latvia	1,670	220
Lithuania	8,970	1,470
Poland ¹	43,610	7,480
Russia	10,380*	3,790*
Sweden	9,240	530

Exploring the sources within the lagoon

3D hydrodynamic model (SHYFEM) of the Curonian Lagoon with an ecological module;

Exploring the sources in the watershed

Most of the unknown (to us) in the watershed comes from Belarus

Model development

"Cut" the model into manageable pieces:

- BY Nemunas part;
- BY Nemunas tributary part (Vilija);
- RU/PL/LT transboundary river (Šesupė);
- Main Nemunas channel;
- 7 LT Tributary rivers

Total 11 "pieces"

Did <u>not</u> include the delta region!

DEM

4 DEMs: Lithuania: 5 m; Poland: 30 m; Russia: 35 m; Belarus: 35 m.

Resampled, snapped and combined.

Data quality

Inaccurate stream network in Belarus and Lithuania

Soil and Land-use

Different soil data sources Total 121 SWAT **soil** types:

- Lithuania: National soil survey;
- Other: FAO;

Different land-use data sources

Total 76 SWAT land-use types:

- Lithuania: National land-use survey;
- Poland, Latvia: Corine;
- Belarus, Russia: Waterbase + Remote sensing

HRU Definition The combination of:

Lakes/Reservoirs

Dilemma: How big is a lake to be a lake?

Common Implementation Strategy for the Water Framework Directive (2000/60/EC): smallest size range for a System A lake type is $0.5 - 1 \text{ km}^2$ surface area* **However, it is recognized that in some regions where there are many small water bodies, this*

general approach will need to be adapted.

In Lithuania alone: > 250 000

Lakes/Reservoirs in Belarus

Горовы

Dilemma: Where to get data on Belarus lakes and reservoirs?

- Knowledge of Russian Language; ← Born in USSR
- Official governmental Issues of Belarus Republic;
- Old (Soviet Union time) datasheets;

Rapto publica

- Fishing sites/forums!

Monitoring grid

Different sources:

- Measured data;
- Modeled/WGN.

Hydrology results (calibrated)

Modeling period: 1995-2012

5 year warm-up period [1995-1999]

8 years calibration [2000-2007]

5 validation [2008-2012]

Did not try on newest data [2013-2015]

Global performance Calibration: NS = 0,74; R^2 = 0,7; Global performance Validation: NS = 0,6; R^2 = 0,63;

Calibration example

Validation example

Climate change impact

- Change in annual runoff (increase);
- Intersessional redistribution of runoff (moving from spring to winter);
- Summer droughts (big vulnerability of small rivers);
- Potential impact on the Curonian Lagoon: salinity change, sediment, biogeochemistry.

Sediment and Nutrient

Conclusions

- Find data → to make sure that the data is of sufficient quality; Many hours of "manual" labor;
- Preliminary results for sediment and nutrient calibration are promising;
- GIS (generally GUI) limits the potential of the model setup;
- Risk: too long to calibrate; (I may not finish in time for the end of the PhD)

Thank you