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Why bridging the scales?

e Climate change is a global phenomenon, and a global overview
on climate change impacts (done by global hydrological models, GHMs) is
important, and can motivate regional impact assessment.

e Climate change impacts manifest at the regional scale, where
most mitigation and adaptation measures are planned and implemented,
and where regional hydrological models (RHMs) are usually applied.

e |tis important to investigate the consistency of the results
modelled at different scales
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Objectives of the study

1. To compare performance of global and regional HMs under current
climate conditions considering the long-term average seasonal
dynamics;

2. To compare sensitivity of simulated annual river discharge at both
scales to climate variability (annual precipitation);

3. To compare simulated climate change impacts for the long-term
average seasonal dynamics driven by 5 bias-corrected GCMs (data
prepared by ISI-MIP); and

4. To quantify sources of uncertainty in a multi-model study using
ANOVA (Analysis Of Variances): from RCP scenarios, driving GCMs
and applied HMs.
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The Inter-Sectoral Impact Model

'S'M'P Intercomparison Project

e |ISIMIP is a international community effort of climate impact modelers
which offers a framework and data to harmonize climate impact
assessments across sectors and scales.
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Application of GHMs and RHMSs to river basins

Basin

Gauge

Drainage area, km2
Average T, deg.C
Average P, mm/yr

Regional models
ECOMAG

HBV

HYMOD

HYPE

Rhine Tagus U. Niger Blue Nile Ganges U. Yellow U. Yangtze Lena Darling U. Mississippi U. Amazon
Lobith  Almourol Koulikoro ElDeim Farakka Tangnaihai Cuntan Stolb Louth  Alton SP Olivenca
160800 67490 120000 238977 835000 121000 804859 2460000 489300 444185 990781

8.7 14 26.5 19.4 21.1 -2 6.8 -10.2 19.2 7.3 21.7

1038 671 1495 1405 1173 506 768 384 590 967 2122

*
* ok * * * * * * * *
* ¥ * * ¥ * * * ¥ *

WaterGAP3
Global Models
CLM

DBH

HO8

LPJmL
Mac-PDM.09
MATSIRO
MPI-HM
PCR-GLOBWB
WaterGAP2




11 river basins for intercomparison
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2. Sensitivity of simulated annual discharge to annual
precipitation: anomalies in Q versus anomalies in P
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3. Changes in long-term average seasonal runoff simulated
by GHMs and RHMs: medians and ranges

(2071-2100 to 1971-2000)
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3. Changes in long-term average seasonal runoff simulated
by GHMs & RHMSs: comparison of medians only
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Increase of uncertainty with time
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ANOVA: Theoretical background

@ ANOVA can be used for variances (sum of squares) decomposition

SST = SSkyg + SScem + SSkep +

main effects
SSHdecm + SSHydch + SSchGcm + SSHydchGcm

~

Interaction effects

@ main effects: describe direct effect e.g. the relationship between
RCPs vs. temperature increase

@ interaction terms: describe nonlinear behavior: if they have high
contribution then one effects are depended on the value of another
factor

@ finaly contribution of each factor can be calculated as: S?T;?
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ANOVA: Total uncertainty contribution considering
different scenario settings

Small difference in scenario temperature increase Large difference in scenario temperature increase
RCP2.6 and RCP4.5 considered RCP2.6 and RCP8.5 considered
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Global HMs

Regional HMs
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ANOVA: Daily uncertainty contribution

a) Lena b) Blue Nile c) Ganges
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ANOVA: Significance of impacts (F-test)

Example: CC impacts in the Niger basin until 2100 (RCP8.5)

Result: Impact chain with only one GCM as input leads to significant changes (F-test)
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Conclusions |

* Performance of regional models for seasonal dynamics is much
better than that of global models.

e Sensitivities of simulated annual river discharges at both scales
to annual precipitation are quite similar.

e Distribution of uncertainty sources differs between basins and
variables (Q10, MF, Q90). The results with RHMs for all 12
basins in case of MF can be summarized as follows:

- the highest contribution comes from GCMs (54%),
- it is followed by RCPs (30%), and
- the smallest from HMs (16%).
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Conclusions i

In most cases even the direction of change is difficult to
define (very large min/max corridors, especially for GHMs)

However, also small changes in temperature (-> Paris
agreement) lead to significant impacts on hydrology,

but in many cases we just don‘t know the direction of the
impact, and this is due to GCM related uncertainty
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Conclusions Il

It can be concluded that the results of the single impact
models should be always treated with precaution.

Though a good preformance of a HM under current
conditions does not guarantee ist reliability in simulated CC
impacts, especially for far future, an improvement of model
performance is needed (e.g. stage Il of model calibration for
RHMs in ISI-MIP is planned)

A large uncertainty related to GCMs, especially in
some regions (African basins, Amazon, Darling in
Australia), is a problem which requires further efforts
of climate modellers.
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4. Sources of uncertainty: 4 examples (RHMs only)
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4. Triangle of uncertainty (only for RHMSs):
where are the basins placed?

Uncertainty sources on average: 100
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Quantification of uncertainty sources using ANOVA

Upper Niger Rhine Upper Yellow

B GCM 8 GCM*RCP O GCM*RCP*HYD
B RCP @ GCM*HYD
@ RCP*HYD
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