Improving SWAT for simulating N₂O emissions from three cropping systems

Pacific Northwest National Laboratory: Qichun Yang

Pacific Northwest National Laboratory and University of Maryland:

Xuesong Zhang

Outline

- Background
- Objectives
- Model development
- Model performance evaluation
- Sensitivity analysis
- Summary

Background

- Increasing evidences suggest that greenhouse gas (GHG) emission is a key driver of climate change.
- Nitrous Oxide (N₂O) is an important GHG due to its long lifetime and high global warming potential.

http://indianexpress.com/article/india/india-news-india/uttar-pradesh-flood-alert-2922703/ http://usatoday30.usatoday.com/weather/drought/2008-02-11-drought_N.htm

Green house gases (GHGs) balance of <u>diverse cropping systems</u>

Gelfand et al. 2013. Nature.

Background

•Agricultural system is the primary N₂O emitter in the U.S.

Objectives

- Develop a N2O emission module for SWAT
- Evaluate model performance with site-scale observational data
- Improve parameterization of the module
- Analyze sensitivity of N2O estimates to key parameters and input driving forces

Model development

- Multiple numerical models have been developed to simulate N2O emission, including DAYCENT, DNDC, CLM, etc.
- Among these models, DAYCENT is the one that has been widely used and tested from site to global scales (Del Grosso et al, 2002, 2009)
- Current SWAT soil organic carbon processes were adopted from DAYCENT

Model development_nitrification

Model development_denitrification

Model development_N₂O oxidation

$$E_{NO_N2O} = (E_{N2O_den} + E_{N2O_nit}) \times R_{no_n2o}$$

Soil diffusivity

$$R_{no_n2o} = 8 + \frac{18 \times \operatorname{atan} \left(0.75 \times \pi \times (10 \times dD0) \right)}{\pi}$$

Model performance evaluation_site selection

Figure 1. Locations of the three GLBRC scale-up experiment sites

A Corn site (M1), a switchgrass site (M3), and a reference site (M4) in the Marshall Farm Scale-up fields of GLBRC were selected for this study.

Model performance evaluation_soil water

- Soil water was sampled using the gravimetric method (original and dry weight difference)
- Sample were collected from the top 25 cm

 Simulated soil moisture was close to the average value of field data, or within one standard deviation of the average

Model performance evaluation_default simulation

- Default SWAT generally simulated well magnitude of N₂O fluxes
- Seasonal patterns of N₂O fluxes were reasonably simulated at M1 and M3, but not for the reference site (M4)

Figure 3. Model estimates of N_2O emission with default parameter values.at the three sites

Parameters	Unit	Default Values	Calibrated Values
adj _{fc}	unitless	0.015	0.012-0.018
adj _{wp}	unitless	0.002	0.0019-0.0022
wfps_adj	day ⁻¹	1	1.1-1.3
min_nit	unitless	0.1	0.1
f _{nit_max}	unitless	0.15	0.13-0.17

Table 1 SWAT parameters controlling N₂O emission in nitrification and denitrification

Note: adj_{fc} is the maximum fraction of N₂O to nitrified N at the field capacity; adj_{wp} is the minimum fraction of N₂O to nitrified nitrogen at the wilting point; minimin N_{nit_base} is the minimum nitrate concentration required in a soil layer for trace gas calculation; $wfps_adj$ is the adjustment on inflection point for water filled pore space effect on denitrification curve (unitless); f_{nit_max} is the maximum fraction of ammonia that is nitrified during nitrification (unitless).

we calibrated model parameters regulating N₂O production through nitrification and denitrification manually by adjusting parameter values to minimize the discrepancies between model estimates and field observation.

Model performance evaluation_improved simulation

 The optimized parameter sets further reduced bias in estimated average N2O fluxes.

 Calibrated simulation also demonstrated better simulation of the seasonal patterns in N2O emission(P <0.05).

Figure 4. Model estimates of N₂O emission with calibrated parameter values.at the three sites

Comparison of default and calibrated simulations

Simulations	R ²			Bias		
	M1	M3	M4	M1	M3	M4
Default	0.23	0.11	0.02	48.6%	18.0%	117%
Calibrated	0.38	0.12	0.19	9.3%	2.4%	29%

Model performance evaluation

Model performance evaluation_improved simulation

The new SWAT model explained up to 44.21% of the spatial variability in the multi-year average N_2O emission over three sites that represent a broad range of management activities

Parameter sensitivity analysis

Table 2. Sensitivity	y response of N ₂ C	emission to	changes of	of key parameters
----------------------	--------------------------------	-------------	------------	-------------------

Parameters	Changes in Parameter (%)	Changes in		
		M1 site (%)	M3 site (%)	M4 site (%)
adj _{fc}	-20	-9.41	-12.19	-12.68
< colored and set of the set of t	+20	+9.21	+12.14	+12.69
adj _{wp}	-20	-0.19	-0.38	-0.72
	+20	+0.17	-	+0.72
min_nit	-20	-	-	-0.72
	+20			+0.02
wfps_adj	-20	+86.79	+18.14	+195.10
	+20	-40.48	-33.65	-3.9
fnit_max	-20	-3.62	+0.18	-0.77
	+20	+2.35	-0.19	+0.53

Note: adj_{fc} is the maximum fraction of N₂O to nitrified N at the field capacity; adj_{wp} is the minimum fraction of N₂O to nitrified nitrogen at the wilting point; $min @hit N_{nit_base}$ is the minimum nitrate concentration required in a soil layer for trace gas calculation; $wfps_adj$ is the adjustment on inflection point for water filled pore space effect on denitrification curve (unitless); f_{nit_max} is the maximum fraction of ammonia that is nitrified during nitrification (unitless); '-' indicate changes less than 0.01%.

Sensitivity to input data

Parameters	Changes in variable	Changes in N ₂ O emission		
		M1 site (%)	M3 site (%)	M4 site (%)
Precipitation	-20%	-3.66	-3.12	-1.52
	+20%	+1.39	+1.50	+1.44
Temperature	+1°C	+3.69	+1.94	+2.68
	+2°C	+14.36	+0.59	+5.74
Fertilizer use	-20%	-16.25	-0.21	NA
	+20%	+21.01	+0.14	NA

Table 3. Response of N₂O emission to changes in climate conditions and fertilizer use

Note: Negative signs indicate decreases whereas positive signs suggest increases; 'NA' indicates not applicable.

Our sensitivity analysis suggested that N_2O emission had positive correlations with changes in precipitation at the selected sites; Warmer temperatures (2°C increase) would further increase N_2O emission; Responses of N_2O emission to changing fertilizer use highlighted the significant control of chemical fertilizer application on N_2O production, particularly at the corn site (M1).

Summary

- Developing N₂O emission module for SWAT is critical for strengthening the model's capability in simulating agricultural ecosystems.
- •New algorithms provide reasonable estimates of average N₂O fluxes over the three sites, but did not simulate seasonal patterns well at the M4 site.
- Parameter calibration substantial reduce bias in model estimates, and improve simulation of seasonal changes in N₂O fluxes over the three sites.
- Sensitivity analysis is expected to provide valuable information for future application of the model
- Warmer and wetter climate scenarios tended to enhance N_2O emission over the study area.
- Sensitivity response of N₂O simulation to fertilizer use call for improved management practices to reduce fertilizer loss through N₂O emission.

Thanks