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INTRODUCTION

* Natural waters serve as habitat for a wide range of microorganisms, a proportion of
which may be derived from fecal material.

* Fecally-derived microorganisms (FMs) include pathogens, and microbes that are not
pathogenic but do indicate the presence of fecal contamination, e.g. Escherichia coli and
enterococci, commonly referred to as fecal indicator organisms

* The presence of FMs in an aquatic environment indicates that a contamination pathway
has connected a fecal source in the landscape to the water environment.



INTRODUCTION

* Various combinations of microbial fate and transport controls have led to the
development of mathematical models capable of generating “what if”’ responses to a
range of scenarios.

* Watershed-scale fate and transport modeling has the potential to help determine
whether WQ standards can be met under site specific weather and management
conditions,

* The aim of this review is to highlight and critically evaluate developments in modeling of
microbial water quality over the last 10 years, and to discuss directions for model
development and application, with a particular focus on FIOs



SWAT MODULE

Bacteria fate processes included in the SWAT model.
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PATHWAY OF FECAL MICROOGANISM

Pathway of fecal microorganisms
including surface runoff from soil to
survival in surface water bodies;
green lines represent the pathway
of fecal microorganism release and
transport and black lines point to
specific fate-related process that
need to be modeled.
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OVERLAND
-SURVIVAL IN FECAL RESERVOIR-

* Oliver et al. (2010) reported that the use of first-order kinetic equations could result in an underestimation of
E. coli burden attributed to the land reservoir, mainly because of growth and re-growth of E. coli in feces post-
defecation. The survival model suggested by Oliver et al. (2010) was

E(x) = Eingx) + Ex — 1) x e PX) 4 ER(x)

* where E(x) is the total number of the E. coli stored at a pasture on day x (CFU or MPN), Ein is the E. coli input
of fresh deposits (CFU or MPN), b is the die-off rate on day x (), and ER is the magnitude of daily E. coli growth
for the same day (CFU or MPN).



OVERLAND
-SURVIVAL IN FECAL RESERVOIR-

-
= 04 + Panhorst (KP) P Winter
% - Sinton (LS) b Spring .
b & Soupir (MS) € Summer 05‘
g 0.2 —2x Muirhead (RM)4 Autumn ¢ 2 —
- A0 van Kessel (JVYK) ™
= [= Oliver (DO) B - "n
- 0 E?‘; !l 3 #
[ .- L ) -
¥ E _-F Q
o - 1 =2
g 02— =
£ i » %
g 8
) _G.4 =~
=
m -
o
@m -0.6 -
£
s 1 0
-D.B T I T I T I T
-10 0 10 20 30

Thermal time

av Temperature (°C)

) ) Fig. 6. Proposed models to conceptualize E. coli survival in cowpats with two-stage dy-
Fig. 3. Dependence of thermal day growth rate during the first week of sampling and the namics where the second stage shows first-order inactivation kinetics, First-stage cases
average temperature for that period. MS—winter data was not used in the regression. are (1) initial growth, (2) constant population, (3) no initial stage, and (4) fast decay.

Martinez et al.,, 2013



OVERLAND

-SURVIVAL IN SOIL RESERVOIR-

The decision tree to predict the
type of the survival kinetics for E.
coli in bovine animal waste in soil.
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SURFACE RUNOFF
-BACTERIAL RELEASE-

Table 2. Microbial release models.t
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IN-STREAM
_DIE-OFF-
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IN-STREAM

SURVIVAL-

- ENVIRONMENTAL EFFECTS ON E. COLI

. Environmental effects on E. coli survival.

(a) Effect of water salinity on coliform survival (data
from Mancini, 1978);

(b) effect of pH on bacteria survival in light and dark
conditions in waters from the waste stabilization
pond (experimental data from Curtis et al., 1992);
(c) effect of oxygen concentration on the impact of
light on bacteria concentrations; the samples (pH
8.8) received 7.83 M| m2 for 136 min (/4960 W m2)
(experimental data from Curtis et al., 1992);

(d) decrease in relative T90 with the increase in UV
radiation level for two strains of E. coli in water
from retention pond (data from Jozic et al., 2014).
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GROUNDWATER CONTRIBUTION

Bacteria fate processes included in the SWAT model.
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GROUNDWATER CONTRIBUTION
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CONCLUSION

* Many efforts have been made to simulate FIOs using hydrological models
including SWAT.

* But, it is oversimplified in terms of bacteria kinetics in overland and water
environment, and quantification of bacteria runoff.

* The uncertainty reduction in modeling results has to be targeted and can be
achieved via active experimentation with and monitoring of overland,
groundwater, and underlying bed sediment-related fate and transport of fecal

microorganisms
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