

2016 International SWAT Conference

The simulation of watershed-scale effectiveness of agricultural best management practices in a drinking water resource area of Beijing, China

Jiali Qiu Ph.D candidate School of Environment Beijing Normal University 2016-07-28

1. Non-point source pollution

Non-point source pollution from agricultural area have a significant impact on water quality.

Main source:

2. The development of BMPs

Best management practices (BMPs) are defined as the state-of-the-art management practices that help prevent or reduce NPS pollution to a level compatible with water quality goals.

✓ Structural BMPs✓ Non-structural BMPs

3. Models for assessing BMPs

Models	Temporal Resolution	Spatial Representation	Overland Flow Routing	Overland Sediment Routing	Channel Processes	Developer
SWAT	Continuous; Daily or sub-daily time steps.	Sub-basins or further hydrologic response units defined by soil and land use/land cover.	SCS-CN method for infiltration and peak flow rate by modified Rational formula.	MUSLE represented by runoff volume, peak flow rate, and USLE factors.	Channel degradation and sediment deposition process including channel-specific factors.	USDA
AGNPS	Storm-event; One storm duration as a time step.	Cells of equal size with channels included.	SCS-CN method for infiltration, and flow peak using a similar method with SWAT.	USLE for soil erosion and sediment routing through cells with n, USLE factors to be concerned with.	Included in overland cells.	USDA
AnnAGNPS	Continuous; daily or sub-daily time steps.	Cells with homogeneous soil and land use.	SCS-CN method for infiltration and TR-55 method for peak flow.	RUSLE to generate soil erosion daily or user- defined runoff event.	Channel degradation and sediment deposition with Modified Einstein equation and Bagnold equation.	USDA
HSPF	Continuous; variable constant steps (from 1 min up to 1 day).	Pervious and impervious land areas, stream; hydrologic response units.	Philip's equation for infiltration.	Rainfall splash and wash off of detached sediment calculated by an experimental non-liner equation.	Non-cohesive and cohesive sediment transport.	USGS and USEPA

Hui Xie, Lei Chen * and Zhenyao Shen. Assessment of Agricultural Best Management Practices Using Models: Current Issues and Future Perspectives, Water 2015, 7, 1088-1108.

Representation of BMPs

The types of agricultural BMPs that can be assessed by different watershed models:

4. Watershed description

Miyun Watershed is the water source protection area of Miyun Reservoir, which is one of the biggest reservoirs in North China, supplying Beijing residents with potable water.

 The Soil and Water Assessment Tool (SWAT) was used to simulate the flow and nutrient loads in the watershed scale.
The SWAT-CUP program was used to calibrate and verify the model parameters.

1. SWAT description: hydrology

The land phase of the hydrologic cycle is based on the water balance equation:

$$SW_{t} = SW_{0} + \sum_{i=1}^{t} (R_{day} - Q_{surf} - E_{a} - W_{seep} - Q_{gw})$$

Runoff volume

Peak runoff rate

Base flow

SCS curve number procedure :

Modified rational method :

$$q_{peak} = \frac{C \cdot i \cdot Area}{3.6} \qquad C = Q_{surf} / R_{day}$$

Steady-state response of base flow to rescharge :

Base dlow is allowed to enter the reach only if the amount of water stores in the shallow aquifer exceeds a threshold value specified by the user,

 $aq_{shthr,q}$

$$Q_{gw} = \frac{8000 \cdot K_{sat}}{L_{gw}^2} \cdot h_{wtbl}$$

1. SWAT description: nutrients

Nitrate: The concentration of nitrate in the mobile water fraction is calculated:

$$conc_{NO3,mobile} = \frac{NO_{3,ly} \cdot \left\{1 - \exp\left[\frac{-w_{mobile}}{(1 - \theta_e) \cdot SAT_{ly}}\right]\right\}}{w_{mobile}} \qquad w_{mobile} = Q_{surf} + Q_{lat,ly} + w_{perc,ly}$$

Organic N: The amount of organic N transported with sediment to the stream is calculated with a loading function:

$$orgN_{surf} = 0.001 \cdot conc_{orgN} \cdot \frac{sed}{area_{hru}} \cdot \varepsilon_{N:sed}$$

Solution phosphorus: the amount transported in surface runoff is:

Organic & mineral P

transported with sediment to the stream is calculated:

$$sedP_{surf} = 0.001 \cdot conc_{sedP} \cdot \frac{sed}{area_{hru}} \cdot \varepsilon_{P:sed}$$

The common principle of BMPs representation is to depict the change in watershed processes and the response of water quality under or without BMPs.

By changing model inputs or parameter values according to *conservation practices modelling guide*.

Outputs from a particular BMP scenario were annual load change of sediment, total phosphorus (TP) and total nitrogen (TN).

2. BMP modelling

1. Parameter sensitivity

Variable	Parameter	Description	Lower limit	Upper limit	Conversion	Rank
Variable	Falland	Threshold water level in the stranger aquifer for the base flow	Lower limit	Up 50 0Amit	Conversion	Rahk
	SSOLBD Depth from soi Mutsateulle den sigtom of the layer		0.9	215	Ŷ	2
	CH_K2 REVAPMN	THEEstatledbycharflicaton ductivisty altomain contentiol alterriphico	-0.01	500 500	V V	2 3
	SLEUBBSN	Average length Soil evaporation configuration coefficient	80	150	V	3
FLOW	ALPHA ² BNK	SCS moisture condition II curve number for pervious areas Basenow alpha factor for bank storage Saturated bydraulic conductivity of the first layer	-0.2 -0.8	0 ₁ 5 0.8	F	455
12011	GWQMN	SCS moisture condition If curve number for pervious areas Threshold water level in the shallow aquifer for the base flow	-0.2	0:5 5000	r v	б б
FLOW	TENSRAH	Fraction of transmission losses from main channel that enter Maximum canopy storage	•-1 Ø	100	I ₩	8
	SQIPAWC	Available watare aparits stable rail layer	0	1	₹	8
		Saturated hydraulic conductivity of the first layer Maximum canopy storage Effective hydraulic conductivity in main channel alluvium	-0.8 -0.01	198 590	r V V	10 11
	<u> </u>	Plant uptake compensation factor Groundwater delay (days)	Q		V V V	$-\frac{19}{11}$
	SOL_SOLP REVAPMN	Threshold depth of water in the shallow aquifer for rever to	$\begin{array}{c} 0\\ 0\end{array}$	100 500	V V	1 12
	BC4 RCHRG DP	Rate constant for decay of the phosphorus to dissolved	0.01	0.7	V V	$\frac{2}{13}$
-TP	SOLP SPOLP	Initial labile BoosphorPeconteriora Goofficient ace soil layer	0.01	9070	¥	3
	 ERKORGP	Michaelis-Mentor halfes pturation constants for phosphorus	0.001	0.95	¥	4
——————————————————————————————————————	PPERCO BC4	Rate constant wip hours persignation prosfin inst to dissolved	10	17.5	V	5
	SOL NO3	phosphorus (1/day) Initial NO3 concentration in the soil layer Fraction of algal biomass that is phosphorus	0.01	d.02	V V	4
	SOL <u>bO</u> RGP	Rate Loitial hursi Grussylica Phan har hor bornio by er/day)	092	100	¥	5
TN	SO B_ 03	Rate constant for hydrolosis of organic nitrogen to ammonia Initial NO3 concentration in the soil layer (1/day)	0.02	000	v	3
	ERORGN RS4	Rate coefficienOfganigationNclentlingratithe reach at 20°C	0 801	σ^{5}_{1}	V V	4
TN	SOL_ORGN Al6	[1/day] Initial humic organic nitrogen in the soil layer Rate of oxygen uptake per unit NO2-N oxidation	0	100	v V	3
	CH_N2	Michaelis-Menton half-saturation constant for nitrogen	0.01	0.3	V	4
	NPERCO	Nitrogen percolation coefficient	0	1	V	3

2. Parameter calibration and validation

2. Parameter calibration and validation

3. Spatial distribution of pollution

3. Spatial distribution of pollution

Legend

SOLP(kg/ha)

.00338 - .00392

4.814 - 4.961

4.962 - 5.055

N

0 5 10 20 30 40 Kilometers

Å

4. The loads from different land uses

AGRL, Agricultural Land-Generic

FRST, Forest-Mixed

PAST, Pasture

SWRN, Southwestern US (Arid) Range or vacant land

UIDU, Industrial

URMD, Residential-Medium Density

URML, Residential-Med/Low Density

Arc, Calcaric Arenosols CMc, Calcaric Cambisols CMe, Eutric Cambisols FLc, Calcaric Fluvisols GRh, Haplic Greyzems KSI, Luvic Kastanozems

LVg, Gleyic Luvisols

- LVh, Haplic Luvisols
- LVk, Calcic Luvisols
- RGe, Eutric Regosols
- RGc, Calcaric Regosols

4. Temporal distribution of pollution

FLOW-PREC: R² = 0.778 TN-PREC: R² = 0.396 TP-PREC: R² = 0.465

CCF: Converting cropland to forest

CCF: Converting cropland to forest

Conclusions and Outlook

The SWAT model has good applicability for NPS pollution simulation in this area. The NPS pollution exhibited apparent tempospatial heterogeneity. The pollutant loads were positively correlated with the annual rainfall amounts and with agricultural activities.

2

1

The efficiency of each BMP varied in the different sub-basins. The structural BMPs such as filter strip, grassed waterways and constructed wetland was better than that of non-structural BMPs such as converting cropland to for forest, soil testing and fertilizer recommendation and conservation tillage.

3

Further research is required to analyze the influence factors on BMP efficiency and to select a preferred set of BMPs that would result in the greatest reduction in pollutant loads for the least cost to achieve the water environmental control targets.

