

2013 International SWAT Conference, Beijing, China

Evaluation of CO₂ Treatment and the Impact on Watershed Hydrology in SWAT Using Terra MODIS GPP

27 July 2016

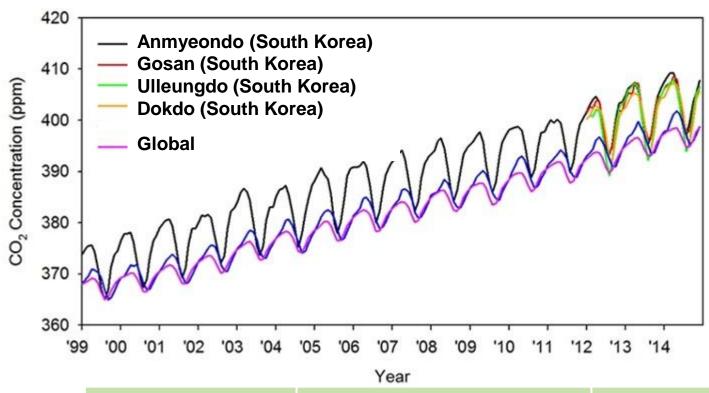
JUNG, Chung-Gil Ph. D. Candidate

LEE, Ji-Wan / AHN, So-Ra Graduate Student / Ph. D.

KIM, Seong-Joon Professor

Contents

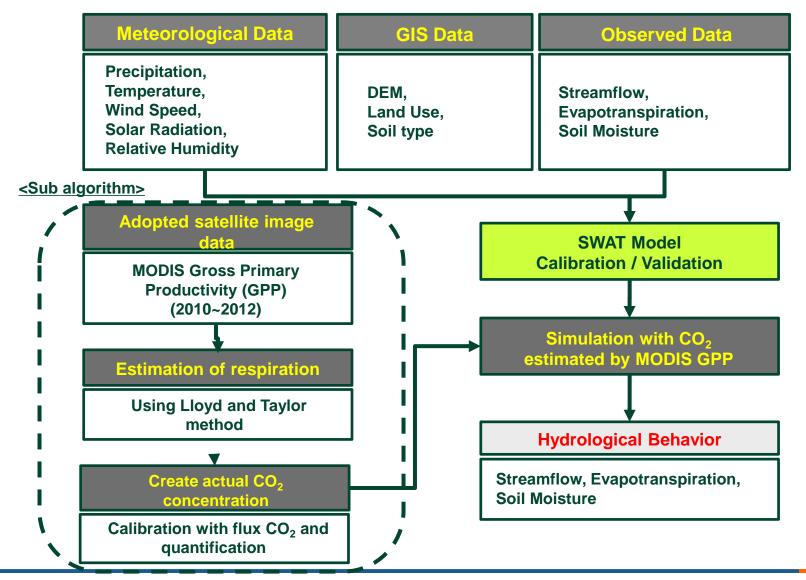
- I. Introduction
- II. Current Status
- III. Flow Chart
- IV. Material and Methods
 - Study Watershed
 - ✓ Input data
 - Model Description and Theory


V. Results and Discussion

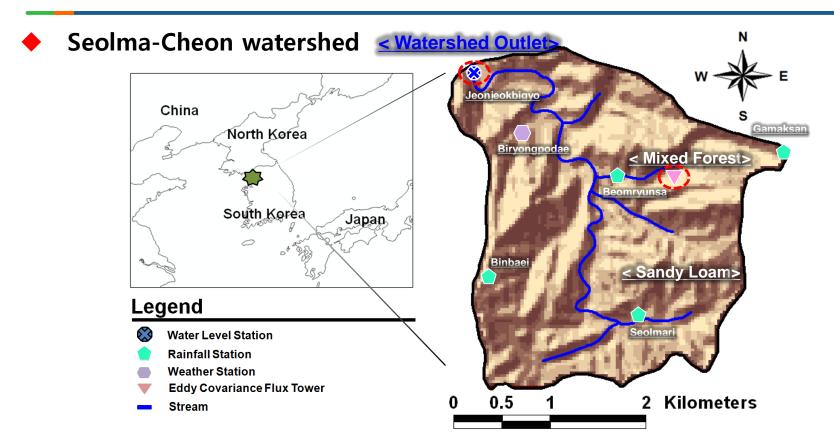
- ✓ Model Calibration and Validation
- √ Impact on hydrologic components
- VI. Results and Discussion

Introduction

- ✓ Fossil fuel consumption has caused an increase in anthropogenic emissions of carbon dioxide (CO₂) and other greenhouse gases.
- ✓ Elevated atmospheric CO₂ concentration directly affects plant growth, which inherently is tied with the hydrological cycle, through lowered rates of stomatal conductance and increases in leaf area.
- ✓ Many studies based on observations and modeling have implied increased CO₂ concentrations and climate change have significant impacts on hydrological systems. However, estimation approach of the CO₂ concentration is that it is not possible to take into account the quantification of spatial CO₂ concentration within watershed.
- These potential impacts can be quantified for a specific watershed using hydrological models.
- ✓ Using Terra MODIS GPP image and Soil and Water Assessment Tool (SWAT) model, this study is to evaluate the potential CO₂ change impact on hydrologic components in a forest dominant Seolma-cheon watershed (8,48 km²) of South Korea


Current Status

Measure CO₂ at 4 stations by Korea Global Atmosphere Center in South Korea


Data Type	Global	Anmyeondo (South Korea)
2015. 03	400.83 PPM	411.03 PPM
2014	397.16 PPM	404.84 PPM
Increase ratio (2012 ~ 2014)	2.25 PPM	2.42 PPM

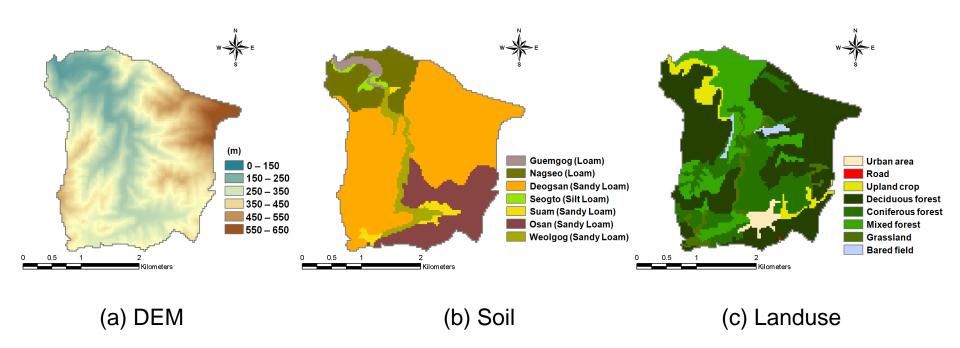
Flow Chart

4 / 18

Study Watershed

✓ Watershed area: 8.54 km²

- ✓ Forest area : 96.2 % (8.22 km²)
- ✓ Annual average precipitation: 1,210 mm (for 5 years) ✓ Soil texture: Sandy loam, Loam
- ✓ Annual average temperature : 10.3 °C


Input and Measured Data

Data set for SWAT model

Data Type	Source	Scale / Periods	Data Description / Properties
Terrain	Korea National Geography Institute	30 m	Digital Elevation Model (DEM)
Soil	Korea Rural Development Administration	1/25,000	Soil classification and physical properties viz. texture, porosity, field capacity, wilting point, saturated conductivity, and soil depth
Land use	2004 Landsat TM Satellite Image	1/25,000	Landsat land use classification (8 classes)
Weather	Korea Institute of Construction Technology / WAter Management Information System	1971-2009	Daily precipitation, minimum and maximum temperature, mean wind speed and relative humidity data
Streamflow	Korea Institute of Construction Technology	2003-2012	Daily streamflow data at watershed outlet
Evapo- transpiration	Korea Institute of Construction Technology / Yonsei Univ.	2008-2012	Daily evapotranspiration data at mixed forest area

GIS Input Data

SWAT Input data

SWAT Model theory

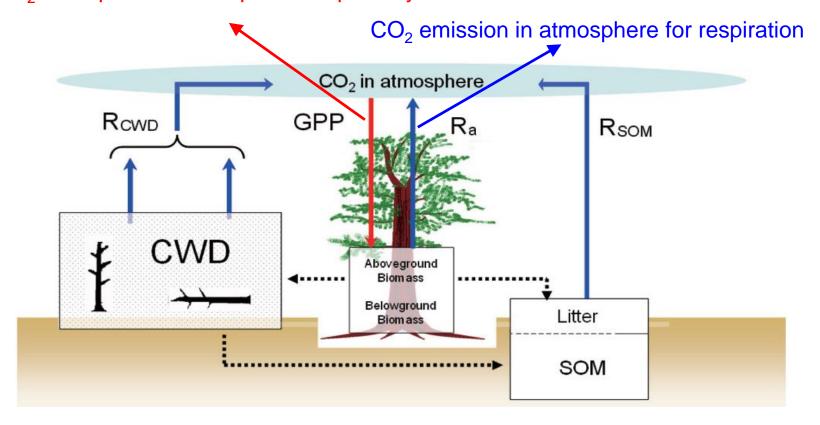
Peman-Monteith evapotranspiration equation

- ✓ The Evapotranspiration (ET) as simulated by SWAT is based on canopy resistance equation related to CO₂ concentration.
- ✓ The relationship between stomatal resistance and canopy resistance has direct ratio.
- \checkmark This ET method has inverse relationship with r_c

$$r_c = r_l \cdot [(0.5 \cdot LAI) \cdot (1.4 - 0.4 \cdot \frac{CO_2}{330})]^{-1}$$

 r_c = canopy resistance (s/m)

 r_l = minimum effective stomatal resistance of a single leaf (s/m)


LAI = leaf area index of the canopy

 CO_2 = concentration of carbon dixide in the atmosphere (ppmv)

CO₂ Estimation

♦ CO₂ flux theory

CO₂ absorption in atmosphere for photosynthesis

CO₂ Estimation

♦ CO₂ flux theory

- ✓ Gross Primary Production (GPP) is absorbed amount by photosynthesis from animals and plants
- ✓ Re is total respiration from animals and plants
- ✓ Net Echo-system Exchange (NEE) means total CO₂ flux on soil, and NPP (Net Primary Production) is practically absorption CO₂ by a plant community
- ✓ Also, NEE is net CO₂ flux for a day (day and night)
- ✓ NEE is calculated by GPP and Re from following equation:

GPP (MODIS GPP) – Re (Lloyd and Taylor method) = NEE (CO₂ concentration)

Re (ecosystem respiration) Estimation

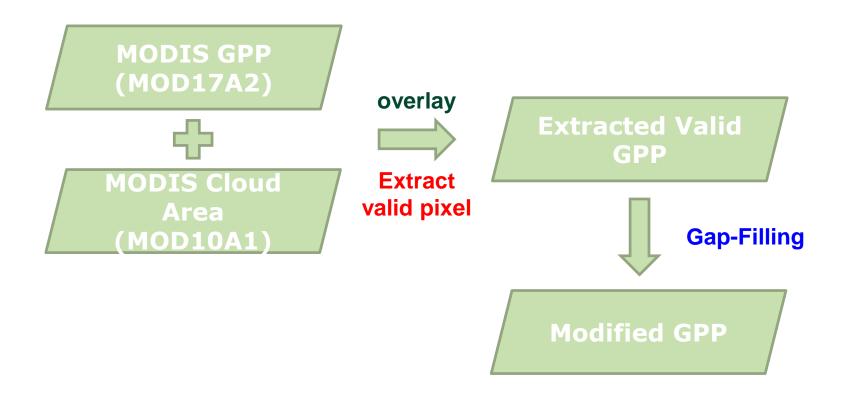
Lloyd and Taylor method (1994)

- ✓ We use Lloyd and Taylor equation for estimation of ecosystem respiration.
- ✓ The ecosystem respiration equation is shown as following equation. Especially, the R_{ref} and E_0 are empirical coefficients using regression analysis with air temperature.
- ✓ We could analyze regression analysis about the coefficients. So, R_{ref} and E_0 resulted in 0.054 mg/m·s and 204.8 K respectively.

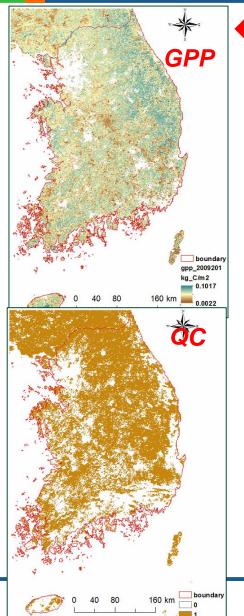
$$Re = \frac{R_{ref} \cdot exp(E_0 \cdot \left[\frac{1}{T_{ref} - T_0} - \frac{1}{T_a - T_0} \right])$$

Re = ecosystem respiration (mm)

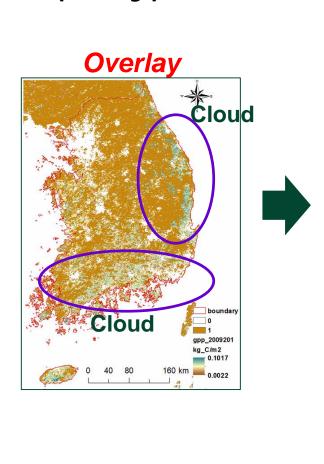
 R_{ref} = the normalized ecosystem respiration at reference temperature (T_{ref} = 10°C)

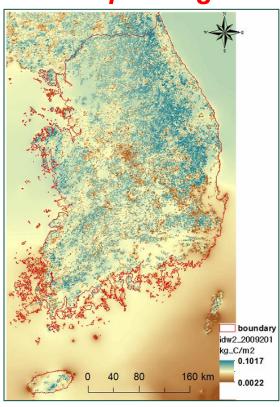

 E_0 = activation energy which is a fitted site-specific parameter (J/mol)

 $T_0 = -46.02$ °C

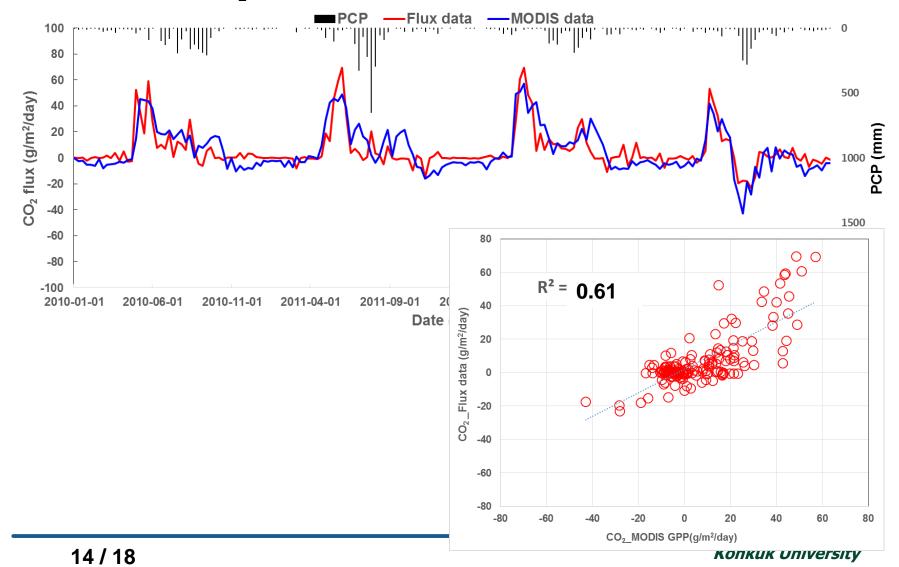

 $T_a = Air temperature (mm)$

GPP Estimation


MODIS GPP QC and Gap-filling process

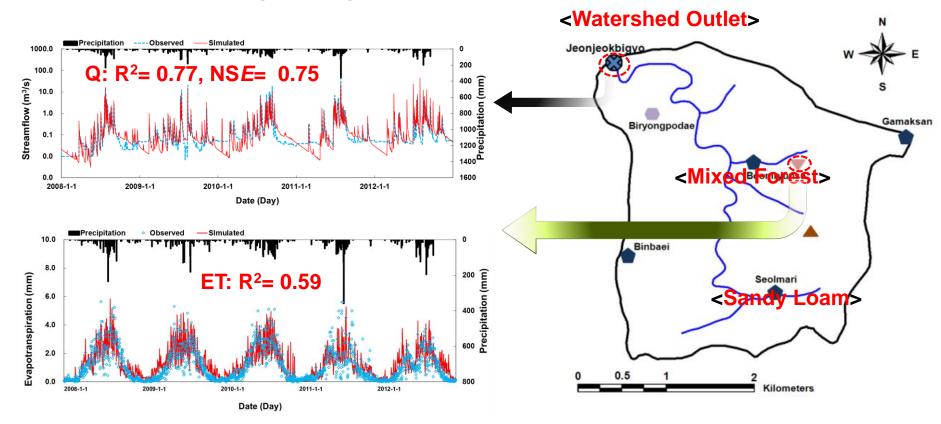

GPP Estimation

Gap-filling process



Gap-Filling

CO₂ Estimation


♦ GPP, Re, and CO₂ flux

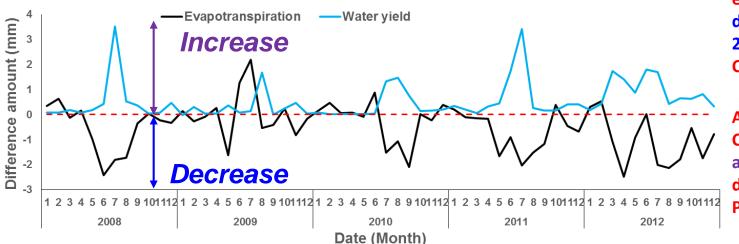
Calibration and Validation

Streamflow, Evapotranspiration

Impact on hydrologic components

- Quantification of actual estimated CO₂ concentration
 - ✓ CO₂ flux is the incoming and returning movement of atmosphere CO₂.
 - ✓ So, we defined that atmosphere CO₂ concentration is sum of annual CO₂ flux.
 - ✓ The unit of the estimated CO₂ flux is converted as PPM unit.

Year	Actual estimated CO ₂ concentration (PPM)
SWAT default	330.0
2010	351.7
2011	375.2
2012	404.9


Impact on hydrologic components

Application of estimated CO₂ concentration

- ✓ The result of ET applied estimated CO₂ concentration (351.7, 375.2, 404.9) has difference from -2.47mm/month to 2.18mm/month (ET applied estimated CO₂ default (330ppm) ET).
- ✓ The result of water yield (WY) applied estimated CO₂ concentration (351.7, 375.2, 404.9) has difference from -0.02 mm/month to 3.52 mm/month (WY applied estimated CO₂ default (330ppm) WY).
- ✓ The result of soil water content (SW) applied estimated CO₂ concentration
 (351.7, 375.2, 404.9) has difference from 3.5 % to 12.9 % (SW applied estimated CO₂ default (330ppm) SW).
- ✓ Because this study area is very small, the change amount of hydrological components didn't be shown definitely. So, we illustrate the differences between SWAT result applied estimated CO₂ and default SWAT result.

Impact on hydrologic components

Application of actual estimated CO₂ concentration

The R² of ET are improved from 0.59 to 0.60 under the actual estimated CO₂

After applied actual estimated CO₂, ET decreased by average 2 % compared default CO₂ PPM (330 PPM).

After applied estimated CO_2 WY increased by average 1.5 % compared default O_2 PPM (330 PPM)

After applied estimated CO₂ SW increased by average 6.0 % compared default O₂ PPM (330 PPM)

As ET, WY are amount (mm) per unit area (km²), loss volume by ET mistakenly simulated as 51,753.8 ton/year under default CO₂ condition (330 ppm).

Konkuk University

Summary and Conclusion

- ✓ The hydrological model SWAT was applied to investigate hydrological effects of rising CO₂ concentrations in watershed.
 - For estimation of CO₂ flux using MODIS GPP, the MODIS GPP product, 8-day composite at 1-km spatial resolution was adopted for the spatial CO₂ flux generation. The MODIS GPP data were corrected by Quality Control (QC) flag. The MODIS CO₂ flux was estimated as the sum of GPP and Re (ecosystem respiration) by Lloyd and Taylor method (1994).
 - The Evapotranspiration could annually decrease about average 2 % in contrast water yield, soil water content could annually increase about 1.5, 6 % respectively, under actual estimated CO₂ concentration.
 - As ET, WY are amount (mm) per unit area (km²), loss volume (ton) by ET decrease as 51,753.8 ton/year under actual CO₂ concentration.
 - Our analyses of sensitivity of hydrological components to actual estimated CO₂ on the direction, magnitude, and spatial distribution of hydrological responses provide needed input for consideration towards watershed management and policies for water resource management.

" Thank You "

For further information, please contact:

JUNG, Chung-Gil

Doctoral candidate, Dept. of Civil & Environmental System Engineering, Konkuk University wjd0823@konkuk.ac.kr