Quantifying the Effects of Climate Change on Runoff, Sediment and Chemical Losses for Different Watershed Sizes

16 October 2015

Carlington W. Wallace
Ph.D. Candidate, ABE, Purdue University

Bernard A. Engel (Advisor)
Professor and Head, ABE, Purdue University

Dennis C. Flanagan (Co-Advisor)
Research Agricultural Engineer, USDA-ARS

National Soil Erosion Research Laboratory
Background

♦ Average annual temperatures in the Midwest have increased over the last several decades

♦ Heat waves are becoming more frequent and cold periods becoming fewer

♦ Snow and ice are arriving later in the fall and starting to melt earlier in the spring

♦ Heavy downpours now occur twice as frequently as they did a century ago
Background

- According to the U.S. Global Change Research Program (USGCRP, 2009) assessments of the Midwest:
 - Average summer temperatures are expected to continue increasing to the end of this century
 - Precipitation in the Midwest is likely to fall more frequently in heavy downpours
 - Between heavy rainfall events, there will likely be longer periods without precipitation
Implications of Climate change

Possible downsides

Overworked drainage systems lead to stream channel erosion

Increased ET may lead to increase plant-growth stress

Possible Upsides

Longer growing season
(Source: Southworth et al., 2002)

<table>
<thead>
<tr>
<th>Crop Yield / Climate Scenario</th>
<th>Lesser CC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soybeans, late maturing</td>
<td>10-20% increase</td>
</tr>
<tr>
<td>Soybeans, mid maturing</td>
<td>20-30% increase</td>
</tr>
<tr>
<td>Soybeans, early maturing</td>
<td>20-30% increase</td>
</tr>
<tr>
<td>Winter Wheat</td>
<td>40-50% increase</td>
</tr>
</tbody>
</table>

Increased levels of carbon dioxide may increase yields in C_3 photosynthetic pathway plants
Objective

Quantify the effects of future climate conditions on surface runoff, sediment and chemical losses at different watershed sizes using the Soil and Water Assessment Tool (SWAT).

Hypothesis

Future climate conditions will have significant influence on runoff, sediment, atrazine, soluble nitrogen, total nitrogen, soluble phosphorus and total phosphorus losses under current agricultural practices and management conditions.
Study Area: Cedar Creek at Cedarville

- **F34 = 183km²**
- **AXL = 42km²**
- **ALG = 20km²**
- **CCW = 679km²**

- **Largest Tributary in SJRW**
- **Great Lakes Plain**
- **Topography**
 - < 2% avg. slope
 - 277m avg. elev.
- **Climate**
 - 950 mm/yr. precipitation
 - 10 to 23°C during growing season
ALG watershed
Study Area: Landuse Distribution

ALG
- Row Crops (%)
- Pasture (%)
- Forest-Mixed (%)
- Residential (%)
- Other (%)

AXL

F34

CCW

National Soil Erosion Research Laboratory
Soil and Water Assessment Tool (SWAT)

<table>
<thead>
<tr>
<th>Crop</th>
<th>Date</th>
<th>Management Operation</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn</td>
<td>22-Apr</td>
<td>Nitrogen Application (as Anhydrous Ammonia)</td>
<td>176.0 kg/ha</td>
</tr>
<tr>
<td>Corn</td>
<td>22-Apr</td>
<td>Phosphorus (P_2O_5) Application (as DAP/MAP)</td>
<td>54.0 kg/ha</td>
</tr>
<tr>
<td>Corn</td>
<td>22-Apr</td>
<td>Pesticide Application (as Atrazine)</td>
<td>2.2 kg/ha</td>
</tr>
<tr>
<td></td>
<td>6-May</td>
<td>Tillage, Offset disk plow (No-Till on 20% ALG & AXL)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6-May</td>
<td>Planting</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10-Oct</td>
<td>Harvest</td>
<td></td>
</tr>
<tr>
<td>Soybeans</td>
<td>10-May</td>
<td>Phosphorus (P_2O_5) Application (as DAP/MAP)</td>
<td>40.0 kg/ha</td>
</tr>
<tr>
<td>Soybeans</td>
<td>24-May</td>
<td>No-Tillage, drill (100% ALG & AXL) (50% F34 & CCW)</td>
<td></td>
</tr>
<tr>
<td>Soybeans</td>
<td>24-May</td>
<td>Planting</td>
<td></td>
</tr>
<tr>
<td>Soybeans</td>
<td>7-Oct</td>
<td>Harvest</td>
<td></td>
</tr>
<tr>
<td>Soybeans</td>
<td>20-Oct</td>
<td>Tillage, Chisel plow (30% mixing)</td>
<td></td>
</tr>
</tbody>
</table>
Generating future climate files for SWAT

MarkSim Decision Support System for Agrotechnology Transfer (DSSAT) weather file generator

- Downscaled climate projections from the IPCC 5th Assessment Report (AR5)
- Ensemble mean of 17 GCMs from CMIP5 model family, simulated under RCP 6.0 scenario \((RCP = 6.0 \text{ W/m}^2 \text{ or } 850\text{ppm CO}_2 \text{ equivalent in 2100})\)
- Allows download of multiple replicates of future climates
Future Climate - Garrett, IN (Lat: 41.33, Lng: -85.13)

By end of this century

Average annual precipitation will increase **8.5%**
Average annual max temperature will increase **3.9°C**
Average annual min temperature will increase **4.0°C**
Average daily solar radiation will increase **2.4%**
SWAT model simulations

- Simulate hydrology, sediment, atrazine, nitrogen and phosphorus at four watershed sizes

- Simulations performed at daily time-step and summarized annually

- Baseline climate - 1961 - 1990

- Future climate - 2020 - 2099
Results: Increasing temperature and precipitation caused increased monthly ET.
Results: Average annual surface runoff & tile flow

- **Surface flow:**
 - 20% decrease

- **Tile flow:**
 - 25% increase
Results: Overland flow + Tile flow

Simulation Period (Decadal)

Runoff (mm yr\(^{-1}\))

8.7% Increase
Results: Average annual sediment & atrazine losses

Sediment loss (t ha\(^{-1}\) yr\(^{-1}\))

Time (Decadal)

Atrazine loss (g ha\(^{-1}\) yr\(^{-1}\))

Time (Decadal)
Results: Average annual soluble-N & total-N losses
Results: Average annual soluble-P & total-P losses

<table>
<thead>
<tr>
<th>Time (Decadal)</th>
<th>Baseline</th>
<th>2020s</th>
<th>2030s</th>
<th>2040s</th>
<th>2050s</th>
<th>2060s</th>
<th>2070s</th>
<th>2080s</th>
<th>2090s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soluble-P loss (kg ha⁻¹ yr⁻¹)</td>
<td>0.0</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total-P loss (kg ha⁻¹ yr⁻¹)</td>
<td>0.0</td>
<td>0.2</td>
<td>0.4</td>
<td>0.6</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summary & Conclusions

- Surface flow will likely decrease as tile flow increases due to an increasing number of day with smaller rainfall events.
- Increasing temperatures also increased infiltration and reduced surface runoff by ~40% during winter months.
- Average annual sediment and atrazine losses remained relatively constant towards the end of the century at all four watershed scales (varying slightly with rainfall volume).
- Average annual loss for both soluble-N and total-N will increase slightly towards the end of this century at all four watershed scales.
Summary & Conclusions (cont.)

- Average annual soluble-P and total-P decreased gradually toward the end of this century especially in the larger watersheds where sediment loss was relatively constant. In addition, higher soil temperatures increased plant phosphorus uptake.

- Projected future climate changes in northeastern Indiana to end of this century will affect runoff, soil loss, and subsequently nutrients and pesticide losses, though not at an alarming rate.

- There was no noticeable effect of watershed scale under future climate conditions.
Thank you...