Large scale water quality modeling in Lithuania: parameterization, calibration and validation using PAIC-SWAT tool

Nina Zarrineh(1,2,3), Ann van Griensven(3,4), Juris Sennikovs(5), Liga Bekere(5), and Svajunas Plunge(6)

(1) Agroscope, Institute for Sustainability Sciences, Zurich, Switzerland
(2) Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
(3) Vrije Universiteit Brussel, Department of Hydrology and Hydraulic Engineering, Brussels, Belgium
(4) UNESCO-IHE, Chair group of Hydrology and Hydraulic Engineering, Delft, Netherlands
(5) University of Latvia, Faculty of Physics and Mathematics, Riga, Latvia
(6) Environmental Protection Agency of Lithuania, Vilnius, Lithuania
Table of contents

- Problem statement
- Model and data
- Calibration, validation, extrapolation and evaluation strategy
- Results
- Conclusion
Problem statement

- All members states need to implement the Water Framework Directive to get good status in all water bodies.
- Lithuanian Environmental Protection Agency (AAA) has to elaborate river basin districts management plans and programs of measures for all catchments in Lithuania.
- Models should be open source, reproducible and flexible (at any moment changes/adaptations can be done without redoing the whole work).
Input data
PAIC-SWAT model

- Soil and Water Assessment Tool (SWAT)
- a Python workflow by the Center of Processes Analysis and Research (PAIC).

>1000 sub-basin

HRU originally 1,400,000, after elimination <5ha – 200,000
Calibration strategy

- Daily Flow data:
 - 62 stations
 - 1997-2012.

- Water quality data
 - 500 stations
 - 135 data-rich
 - 1997-2012.

- A regionalization strategy for 13 hydrological regions.
- Automated and manual calibration for selected catchment
- Dividing data to 3 parts first and last 1/3 for calibration and 1/3 in the middle for validation
- Transfer to other catchments in hydrological region
Evaluation criteria for hydrology

<table>
<thead>
<tr>
<th>Action</th>
<th>NSE threshold</th>
<th>PBIAS threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibration</td>
<td>NSE > 0.5</td>
<td>PBIAS < 20%</td>
</tr>
<tr>
<td>Validation</td>
<td>NSE > 0.4</td>
<td>PBIAS < 25%</td>
</tr>
<tr>
<td>Extrapolation (transfer)</td>
<td>NSE > 0.3</td>
<td>PBIAS < 30%</td>
</tr>
</tbody>
</table>

Observation vs. Simulation

Station Nevežis-Panevežis

Moriaisi et al., 2007
Evaluation criteria for water quality

<table>
<thead>
<tr>
<th>Action</th>
<th>R² threshold, N-NO₃, N-tot</th>
<th>PBIAS threshold, all parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibration</td>
<td>R² > 0.5</td>
<td>PBIAS < 40%</td>
</tr>
<tr>
<td>Validation</td>
<td>R² > 0.4</td>
<td>PBIAS < 70%</td>
</tr>
<tr>
<td>Extrapolation (transfer)</td>
<td>R² > 0.3</td>
<td>PBIAS < 70%</td>
</tr>
</tbody>
</table>

NO₃-N: Šeimena - žemiau Vilkaviškio.

PO₄-P: Šeimena - žemiau Vilkaviškio.
Evaluation of mass balance
Results of hydrology
Results of water quality

Number of station

Number of station
Results of in-stream NO3-N
Results of in-stream PO4-P
Conclusion

• For hydrology: > 90% OK
• For water quality: >95% OK

• Data errors mainly cause of problems

• Parameterization, calibration, validation and extrapolation of flow and water quality parameters was successful.
Thanks for your attention