Application of the new grid-based SWAT landscape model in a small mountainous watershed in Germany

Stefan Julich1, Hendrik Rathjens2, Martin Volk3, Karl-Heinz Feger1

1 Institute of Soil Science and Site Ecology, TU Dresden
2 Earth, Atmospheric, and Planetary Sciences, Purdue University
3 Department of Computational Landscape Ecology, Helmholtz Centre for Environmental Research GmbH - UFZ

24th June 2015
To test whether the application of the SWAT-Grid version achieves comparable results to SWAT 2012 for a small mountainous watershed in Germany.

Due to shallow soils over bedrock, lateral sub-surface flow is the dominant runoff-generation process.
Development of a grid-based version of the SWAT landscape model

H. Rathjens,1* N. Oppelt,1 D. D. Bosch,2 J. G. Arnold3 and M. Volk4

1 Kiel University, Department of Geography, Ludewig-Meyn-Str. 14, 24098, Kiel, Germany
2 US Department of Agriculture, Agricultural Research Service, Southeast Watershed Research Laboratory, P.O. Box 946, Tifton, GA, 31793, USA
3 US Department of Agriculture, Agricultural Research Service, Grassland, Soil and Water Research Laboratory, 808 East Blackland Rd., Temple, TX, 76502, USA
4 Helmholtz Centre for Environmental Research—UFZ Leipzig, Department of Computational Landscape Ecology, Permoserstr. 15, 04318, Leipzig, Germany

Abstract:

Integrated river basin models should provide a spatially distributed representation of basin hydrology and transport processes to allow for spatially implementing specific management and conservation measures. To accomplish this, the Soil and Water Assessment Tool (SWAT) was modified by integrating a landscape routing model to simulate water flow across discretized routing units. This paper presents a grid-based version of the SWAT landscape model that has been developed to enhance the spatial representation of hydrology and transport processes. The modified model uses a new flow separation index that considers topographic features and soil properties to capture channel and landscape flow processes related to specific landscape positions. The resulting model is spatially fully distributed and includes surface, lateral and groundwater fluxes in each grid cell of the watershed. Furthermore, it more closely represents the spatially heterogeneous distributed flow and transport processes in a watershed. The model was calibrated and validated for the Little River Watershed (LRW) near Tifton, Georgia (USA). Water balance simulations as well as the spatial distribution of surface runoff, subsurface flow and evapotranspiration are examined. Model results indicate that groundwater flow is the dominant landscape process in the LRW. Results are promising, and satisfactory output was obtained with the presented grid-based SWAT landscape model. Nath-Satellite model efficiencies for daily stream flow were 0.59 and 0.63 for calibration and validation periods, and the model reasonably simulates the impact of the landscape position on surface runoff, subsurface flow and evapotranspiration. Additional revision of the model will likely be necessary to adequately represent temporal variations of transport and flow processes in a watershed. Copyright © 2014 John Wiley & Sons, Ltd.

KEY WORDS raster-based simulation; watershed modeling; discretization scheme; SWATgrid; landscape routing

Received 10 September 2013; Accepted 14 March 2014

INTRODUCTION

River basin models are valuable tools for examining the impact of land use and management on landscape hydrology, sediment transport and water quality. The Soil and Water Assessment Tool (SWAT) has proven to be a suitable tool under many landscape conditions, and in most applications the prediction accuracy was satisfactory for obtaining knowledge of the hydrologic system and the watershed processes (Arnold and Fohrer, 2005; Gassman et al., 2007). However, previous studies showed that the assessment of the effects of conservation practices on watershed-scale water quality relies strongly on the flow and transport models used (e.g. Mausbach and Dedrick, 2004). The SWAT model typically utilizes a hydrologic response unit (HRU) approach. The watershed is divided into sub-watersheds which are further subdivided into HRUs. However, the SWAT routing command language enables the model to use an HRU, a representative hillslope or a grid cell configuration, alone or in combination, to model a watershed (Arnold et al., 1994, 2013). Nevertheless, SWAT uses the HRU configuration as the primary discretization scheme (Gassman et al., 2007; Arnold et al., 2013), and all geographic information system (GIS) input interfaces use the computationally efficient HRU discretization. Thus, there are only few SWAT applications and studies which actually have used a different discretization approach (e.g. Manguerra and Engel, 1998; White et al., 2009; Arnold et al., 2010; Rathjens and Oppelt, 2012a,b).

Within the HRU approach, all areas in a sub-watershed with the same combination of soil, topography and land use are lumped to form an HRU. The HRUs represent percentages of the sub-watershed area and are not spatially
Channel flow
Landscape flow

- Surface runoff
- Lateral flow
- Shallow groundwater flow

The combination of the landscape routing model and a grid-based setup provides a spatially fully distributed model.
Grid-based SWAT landscape model
Research area - Ammelsdorf catchment

Climate (period 1961 – 1990)

Precipitation
1096 mm a⁻¹

Mean annual temperature
4.3 °C

(Bernhofer et al., 2009)

Size
51 km²
Input data for Ammelsdorf catchment

- 20 m resolution DEM (GeoSN, 2010)
- Land use, CIR 2005 (LfULG, 2010)
- Soil map BK50 (LfULG, 2011)
Model Set-Up

- **SWAT2012**
 - 13 Subbasins
 - 1312 HRU’S
 - 5 min 5 years

- **SWAT-dis**
 - 13000 Gridcells
 - 100mx100m
 - 11 min 5 years
Calibration – SWAT-Grid

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>SURLAG [days]</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>SFTMP [°C]</td>
<td>-1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>SMTMP [°C]</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>SMFMX [°C]</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>SMFMN [°C]</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>SNOCOVMX [°C]</td>
<td>0.5</td>
<td>3</td>
</tr>
<tr>
<td>SNO50COV [°C]</td>
<td>0.01</td>
<td>0.99</td>
</tr>
<tr>
<td>TIMP [-]</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>AWC * [mm/mm]</td>
<td>-0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>k_norock* [mm/h]</td>
<td>-0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>k_rock [mm/h]</td>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>ALPHA_BF [-]</td>
<td>0.001</td>
<td>0.99</td>
</tr>
<tr>
<td>GW_DELAY [days]</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>GW_REVAP [-]</td>
<td>0.02</td>
<td>0.2</td>
</tr>
<tr>
<td>GW_QMN [mm]</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

* Relative to initial value

- 500 Parameter Sets
- Two year warm up
- Calibration 2010-211
- Validation 2012

Objective function:
Average of NSE and NSE-log @ all available gaging station

\[
NSE = 1 - \frac{\sum_{i=1}^{n}(O_i - P_i)^2}{\sum_{i=1}^{n}(O_i - \bar{O})^2}
\]
Calibration

Outlet

NSE:
SWAT 2012 = 0.58
SWAT-Grid = 0.58

NSE-log:
SWAT 2012 = 0.65
SWAT-Grid = 0.54

Upstream

NSE:
SWAT 2012 = 0.54
SWAT-Grid = 0.51

NSE-log:
SWAT 2012 = 0.69
SWAT-Grid = 0.48
Validation

Outlet

NSE:
SWAT 2012 = 0.50
SWAT-Grid = 0.75

NSE-log:
SWAT 2012 = 0.70
SWAT-Grid = 0.64

Upstream

NSE:
SWAT 2012 = 0.45
SWAT-Grid = 0.54

NSE-log:
SWAT 2012 = 0.65
SWAT-Grid = 0.58
Spatial analysis – surface flow

SWAT

SWAT-Grid

<table>
<thead>
<tr>
<th>MON</th>
<th>RAIN (\text{MM})</th>
<th>AVE MONTHLY BASIN VALUES</th>
<th>SURF Q (\text{MM})</th>
<th>LAT Q (\text{MM})</th>
<th>WATER YIELD (\text{MM})</th>
<th>AVE MONTHLY BASIN VALUES</th>
<th>SURF Q (\text{MM})</th>
<th>LAT Q (\text{MM})</th>
<th>WATER YIELD (\text{MM})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>140.01</td>
<td>86.62</td>
<td>98.65</td>
<td>6.71</td>
<td>109.17</td>
<td>3.69</td>
<td>78.37</td>
<td>5.49</td>
<td>66.43</td>
</tr>
<tr>
<td>2</td>
<td>69.47</td>
<td>41.81</td>
<td>30.51</td>
<td>73.10</td>
<td>20.51</td>
<td>49.32</td>
<td>22.99</td>
<td>73.30</td>
<td>36.97</td>
</tr>
<tr>
<td>3</td>
<td>67.00</td>
<td>23.95</td>
<td>113.47</td>
<td>19.00</td>
<td>63.41</td>
<td>19.02</td>
<td>58.57</td>
<td>20.91</td>
<td>36.69</td>
</tr>
<tr>
<td>4</td>
<td>64.77</td>
<td>51.45</td>
<td>83.95</td>
<td>19.80</td>
<td>52.72</td>
<td>51.45</td>
<td>26.49</td>
<td>34.89</td>
<td>36.69</td>
</tr>
<tr>
<td>5</td>
<td>91.84</td>
<td>1.30</td>
<td>30.51</td>
<td>21.36</td>
<td>34.89</td>
<td>1.30</td>
<td>16.48</td>
<td>21.36</td>
<td>34.89</td>
</tr>
<tr>
<td>6</td>
<td>96.37</td>
<td>0.00</td>
<td>15.46</td>
<td>19.02</td>
<td>36.69</td>
<td>0.00</td>
<td>58.57</td>
<td>20.91</td>
<td>36.69</td>
</tr>
<tr>
<td>7</td>
<td>199.18</td>
<td>0.00</td>
<td>58.57</td>
<td>20.51</td>
<td>73.10</td>
<td>0.00</td>
<td>49.32</td>
<td>22.99</td>
<td>73.30</td>
</tr>
<tr>
<td>8</td>
<td>151.21</td>
<td>0.00</td>
<td>49.32</td>
<td>22.99</td>
<td>73.30</td>
<td>0.00</td>
<td>41.61</td>
<td>21.75</td>
<td>63.41</td>
</tr>
<tr>
<td>9</td>
<td>105.41</td>
<td>0.00</td>
<td>41.61</td>
<td>21.75</td>
<td>63.41</td>
<td>0.00</td>
<td>7.08</td>
<td>21.50</td>
<td>33.69</td>
</tr>
<tr>
<td>10</td>
<td>48.67</td>
<td>2.59</td>
<td>7.08</td>
<td>21.50</td>
<td>33.69</td>
<td>2.59</td>
<td>20.42</td>
<td>16.86</td>
<td>36.97</td>
</tr>
<tr>
<td>12</td>
<td>168.14</td>
<td>116.75</td>
<td>59.42</td>
<td>9.52</td>
<td>66.87</td>
<td>116.75</td>
<td>59.42</td>
<td>9.52</td>
<td>66.87</td>
</tr>
</tbody>
</table>
Spatial analysis – lateral flow

SWAT 2012

SWAT-Grid

lateral flow [mm]
The application of SWAT-Grid leads to similar results as SWAT2012 in regards of model efficiency.

Differences in spatial output of both versions.

Both versions → difficulties in snow melt periods.

More data than measured discharge needed → for validation of the model …