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Abstract In this paper, the Genetic Algorithms (GA) and Bayesian model averaging (BMA) 13

were used to simultaneously conduct calibration and uncertainty analysis for the Soil and 14

Water Assessment Tool (SWAT). In this combined method, several SWAT models with 15

different structures are first selected; next GA is used to calibrate each model using observed 16

streamflow data; finally, BMA is applied to combine the ensemble predictions and provide 17

uncertainty interval estimation. This method was tested in two contrasting basins, the Little 18

River Experimental Basin in Georgia, USA, and the Yellow River Headwater Basin in China. 19

The results obtained in the two cast studies show that this combined method can provide 20

deterministic predictions better than or comparable to the best calibrated model using GA. 21

66.7% and 90% uncertainty intervals estimated by this method were analyzed. The 22

differences between the percentage of coverage of observations and the corresponding 23

expected coverage percentage are within 10% for both calibration and validation periods in 24

these two test basins. This combined methodology provides a practical and flexible tool to 25

attain reliable deterministic simulation and uncertainty analysis of SWAT.26
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1 INTRODUCTION28

In recent years, hydrologic models are more and more widely applied by hydrologists 29

and resource managers as a tool to understand and manage ecological and human activities 30

that affect basin systems. Traditionally, the hydrologic models are calibrated to find one 31

optimal hydrologic model with the optimum objective functions (e.g. sum square error). The 32

optimized model is then used to assess water resources practices. The inferences based on a 33

single model implicitly assumes that the probability that the single model generates the data 34

accurately is 1, and neglects the uncertainty inherent in the model selection process 35

(Montgomery and Nyhan, 2008; Raftery and Zheng, 2003). Uncertainty within model output 36

is a major concern, particularly when modeling results are used to set policy. Because of 37

uncertainties associated with input, model structure, parameter, and output, the model 38

predictions are not a certain value, and should be represented with a confidence range (Beven 39

and Binley, 1992, Gupta et al., 1998; Beven, 2000; Beven and Freer, 2001; Beven, 2006; Van 40

Griensven, 2008). Reasonable estimates of prediction uncertainty of hydrologic processes are 41

valuable to water resources and other relevant decision making processes (Liu and Gupta, 42

2007).  Uncertainty estimates are routinely incorporated into Total Maximum Daily Load 43

(TMDL) estimates and are an important part of the TMDL implementation plan 44

(Shirmohammadi et al., 2006). Usually, water management projects are planned and designed 45

using scenarios that fall at the conservative end of the range of plausible outcomes. Over 46

estimation of uncertainty can result in over design of mitigation measures, while under 47

estimation of uncertainty can lead to inadequate preparation for potential situations. In order 48

to successfully apply hydrological models in practical water resources investigations, careful 49

calibration and prediction uncertainty analysis are required (Duan et al., 1992; Beven and 50

Binley, 1992; Vrugt et al., 2003; Yang et al., 2008; Van Griensven et al., 2008).51
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As a physically based hydrologic model that can simulate most of the key hydrologic 52

processes at basin scale, the Soil and Water Assessment Tool (SWAT) (Arnold et al., 1998) 53

has been applied world wide for assessing water resources management (Gassman et al., 54

2007). In order to efficiently and effectively apply the SWAT model, different calibration and 55

uncertainty analysis methods have been developed and applied to improve the prediction 56

reliability and quantify prediction uncertainty of SWAT simulations (Eckhardt and Arnold, 57

2001; Bekele and Nicklow, 2007; Yang et al., 2007; Harmel and Smith, 2007; Arabi et al., 58

2007; Kannan et al., 2008). For example, Van Griensven et al. (2003) incorporated the 59

shuffled complex evolution (SCE) algorithm for parameter calibration of SWAT, which was 60

later extended to an uncertainty analysis method known as Sources of Uncertainty Global 61

Assessment using Split SamplES (SUNGLASSES) (Van Griensven et al., 2008). Muleta and 62

Nicklow (2005) combined Genetic Algorithms (GA) and Generalized Likelihood Uncertainty 63

Estimation (GLUE) methods to conduct parameter calibration and uncertainty analysis of 64

SWAT. Yang et al. (2008) compared four uncertainty analysis algorithms, that is GLUE 65

(Beven and Binley, 1992), Sequential Uncertainty Fitting SUFI-2 (Abbaspour et al., 2004), 66

Parameter solutions (ParaSol) (van Griensven and Meixner, 2004), and Markov Chain Monte 67

Carlo (MCMC) based Bayesian analysis techniques for assessing the uncertainty of SWAT 68

predictions. These uncertainty analysis algorithms are differing in philosophy, assumptions, 69

and sampling strategies. Yang et al. (2008) suggested that, if computationally feasible, 70

Bayesian Markov Chain Monte Carlo (MCMC) approaches are most recommendable because 71

of their solid conceptual basis. It is worth noting that the MCMC method requires a large 72

number of SWAT runs. For example, 45,000 runs of SWAT were performed in Yang et al. 73

(2008). Zhang (2008b) test an evolutionary Monte Carlo based MCMC method for SWAT, 74

which took about 200,000 model runs for convergence. Applying the MCMC based methods 75

to assess water resources under future scenarios (e.g. best management practices, and land 76
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use/climate change) is very computationally intensive. In the previous uncertainty studies 77

using SWAT, model prediction uncertainty is mainly attributed to parameter values. It is 78

worth noting that the bias and uncertainty result from model structures selection can exert 79

important impact on model prediction (Neuman, 2003; Butts et al., 2004a, 2004b). Butts et al. 80

(2004a) presented an evaluation of model structure on hydrologic modeling uncertainty by 81

selecting different plausible model structures within a general hydrological modeling tool, 82

and emphasize the importance of exploring different model structures as part of the overall 83

modeling approach. The SWAT model provides a hydrologic modeling tool that allows 84

different model structures to be selected for representing different hydrological processes 85

(e.g. potential evapotranspiration, snow routing, and flood routing). The major purpose of this 86

study is to explore ensemble hydrologic simulation and uncertainty analysis using several 87

model structures within the SWAT model framework.88

Recently, Bayesian Model Averaging (BMA), a method for averaging over different 89

competing models, has been applied to allow incorporating model uncertainty into model 90

prediction. BMA possesses a range of theoretical optimality properties and has shown good 91

performance in reliable prediction and uncertainty analysis in a variety of simulated and real 92

data situations (e.g. weather forecast and hydrologic predictions) (Raftery et al., 2005; Ajami 93

et al., 2006; Duan et al., 2007; Vrugt et al., 2007; Montgomery and Nyhan, 2008). The BMA 94

can be used to examine several competitive models for hydrologic modeling and assessment. 95

In practical applications of SWAT, modelers usually select one or several model structures 96

and choose the best among them. To the best of the authors’ knowledge, seldom studies have 97

been conducted to jointly use multiple structures within the SWAT model. In this study, a 98

combined method, which implements the Genetic Algorithms (GA) and BMA, was proposed99

to conduct calibration and uncertainty analysis of the SWAT model through jointly using 100

multiple model structures. The general procedures for applying GA and BMA to conduct 101
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ensemble hydrologic predictions applied here are: 1) select the specific model components of 102

SWAT to be examined, here we examined different snow, potential evapotranspiration and 103

flow routing methods; 2) calibrate the parameters for each combination of model components104

using GA to provide competing models and model results; 3) use BMA to combine the 105

ensemble predictions and provide uncertainty interval estimation. The examination was 106

limited to the snow, potential evapotranspiration and flow routing to present a manageable 107

number of modeling options for illustration purposes. Compared with running thousands of 108

models for assessing management practices or climate / land use change scenarios using 109

MCMC based method, the BMA has the potential to save a large number of runs of SWAT.110

Two basins were used to test the validity of this framework for providing accurate hydrologic 111

prediction and uncertainty intervals estimation using SWAT. The combination of GA and 112

BMA is expected to provide a practical tool for implementing calibration and uncertainty 113

analysis of computationally intensive hydrologic models. 114

2. MATERALS AND METHODS115

2.1. Study area description116

Two basins, the Little River Experimental Basin (LREB) in the Southeastern USA and 117

Yellow River Headwater Basin (YRHB) in central China were used in this study (Figure 1).  118

The basins were selected to offer a contrast in hydrology for testing purposes. The basic 119

characteristics of the two basins are introduced as follows.120

The LREB (Figure 1) is the upper 334 km2 of the Little River in Georgia, USA, and is 121

the subject of long-term hydrologic and water quality research by USDA-ARS and 122

cooperators (Sheridan, 1997; Bosch et al., 2007). The LREB is located in the Tifton Upland 123

physiographic region, which is characterized by intensive agriculture in relatively small fields 124

in upland areas and riparian forests along stream channels. The region has low topographic 125

relief and is characterized by broad, flat alluvial floodplains, river terraces, and gently sloping 126



ACCEPTED MANUSCRIPT 

6

uplands (Sheridan, 1997). Climate in this region is characterized as humid subtropical with an 127

average annual precipitation of about 1167 mm based on data collected by USDA ARS from 128

1971 to 2000. Soils on the basin are predominantly sands and sandy loams with high 129

infiltration rates. Since surface soils are underlain by shallow, relatively impermeable 130

subsurface horizons, deep seepage and recharge to regional ground water systems are 131

impeded (Sheridan, 1997). Land use types include forest (50%), cropland (31%), pasture 132

(10%), water (2%), and urban (7%) (Bosch et al., 2006).133

The YRHB (Figure 1) is an 114,345 km2 mountainous river basin, which is located in 134

the northeastern part of Tibetan plateau in China. This area is the primary source of water 135

availability for the Yellow River Basin (Liu, 2004). The average elevation is about 4,217 m, 136

and ranges between 2,600 and 6,266 m. The area slopes downward from west to east, ranging 137

from a combined landform of low-mountains and wide valleys with lakes to smooth plateaus. 138

The headwater area has a typical continental alpine cold and dry climate. The annual 139

precipitation amount is around 600 mm and the average annual temperature for the YRHB is 140

near 0°C. In winter the average temperature is below 0°C for most of the weather stations, 141

while in summer the average temperature is above 0°C. This seasonal temperature variation 142

makes snowmelt an important process in this area (Zhang et al., 2008a). This basin is 143

characterized by gently sloping upland, river bed, and swamp and wetland. The major types 144

of soils in this area are clay and loam with relatively low infiltration rates. The major land 145

cover in the study area is grassland, which accounts for approximately 90% of the total area. 146

Other land use/land cover (forest land, rangeland, agriculture land, and bare area) accounts147

for the remaining 10% of the area.148

2.2 SWAT model description149

SWAT is a continuous time, physically based hydrological model. SWAT subdivides a 150

basin into sub-basins connected by a stream network, and further delineates Hydrologic 151
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Response Units (HRUs) consisting of unique combinations of land cover and soils in each 152

sub-basin. SWAT allows a number of different physical processes to be simulated in a basin. 153

The hydrologic routines within SWAT account for snow fall and melt, vadose zone processes 154

(i.e., infiltration, evaporation, plant uptake, lateral flows, and percolation), and ground water 155

flows. The hydrologic cycle as simulated by SWAT is based on the water balance equation:156

)(
1

0 gwseepasurfday

t

i
t QwEQRSWSW  


(1)157

where SWt is the final soil water content (mm H2O), SW0 is the initial soil water content on 158

day i (mm H2O), t is the time (days), Rday is the amount of precipitation on day i (mm H2O), 159

Qsurf is the amount of surface runoff on day i (mm H2O), Ea is the amount of 160

evapotranspiration on day i (mm H2O), wseep is the amount of water entering the vadose zone 161

from the soil profile on day i (mm H2O), and Qgw is the amount of return flow on day i (mm 162

H2O). Precipitation in SWAT is divided into rainfall and snowfall. There are three snow 163

routing algorithms available in SWAT, which include the degree day (DD), DD plus 164

elevation band (Fontaine et al., 2002), and the energy balance based SNOW17 models 165

(Zhang et al., 2008a). Surface runoff volume is estimated using a modified version of the Soil 166

Conservation Service (SCS) Curve Number (CN) method (Neitsch et al., 2005a). For 167

evapotranspiration estimation, three options are available in SWAT, that is, Penman-168

Monteith, Priestley-Taylor, and Hargreaves methods (Neitsch et al., 2005a). A kinematic 169

storage model is used to predict lateral flow, whereas return flow is simulated by creating a 170

shallow aquifer (Arnold et al., 1998). The Variable Storage and Muskingum methods are 171

used for channel flood routing. Outflow from a channel is adjusted for transmission losses, 172

evaporation, diversions, and return flow (Arnold et al., 1998).173

In the SWAT model, there are numerous parameters to be calibrated to match the 174

simulated and observed flow. Van Liew et al. (2007) tested the suitability of SWAT for the 175
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Conservation Effects Assessment Project in several USDA Agricultural Research Service 176

basins. In the study conducted by Van Liew et al. (2007), eleven parameters were identified 177

as sensitive for the LREB. These eleven parameters (Table 1) were adjusted by the GA for 178

the LREB in this study. In the YRHB, five parameters (i.e. CN2, ESCO, SURLAG, 179

GW_REVAP, and ALPHA_BF) were adjusted for the calibration according to Zhang et al. 180

(2008a). The general description of the parameters used for the calibration is shown in Table 181

1. The parameters’ ranges were limited according to van Griensven et al. (2006) and Neitsch 182

et al. (2005b).183

2.3 Genetic Algorithms184

Zhang et al. (2009c) compared five global optimization algorithms for parameter 185

calibration of SWAT in four basins, and their results show the advantage of GA over other 186

algorithms for calibrating SWAT. Genetic Algorithms are stochastic search procedures 187

inspired by evolutionary biology of natural selection and genetics (Holland, 1975; Goldberg, 188

1989), such as inheritance, mutation, selection, and crossover. The implementation of GA 189

starts with initializing a population of candidate solutions (called chromosomes) which are 190

randomly sampled from the feasible parameter space. In each generation, the individual 191

chromosomes are selected through a fitness-based process, where the more fit chromosomes 192

in the population are preferred to be selected to reproduce new promising offspring. Next, a 193

new generation population of chromosomes is generated from these selected ones using 194

crossover and mutation operations. The crossover operator chooses “parent” solutions and 195

exchange important building blocks of two parent chromosomes to generate new “offspring” 196

solutions. The “offspring” solutions are then randomly mutated to increase the diversity of 197

new population. Through a steady-state-delete-worst plan (Reca and Martinez, 2006), the 198

fitter chromosomes among the old and new population are input into next generation for 199

evolution. This generational evolution of the parameter solutions is repeated until a maximum 200
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number of model evaluations are reached. With flexibility and robustness, GAs have been 201

successfully applied to solve complex nonlinear programming problems in many science and 202

engineering branches (Reca and Martinez, 2006). Following Schaffer et al. (1989) and Reca 203

and Martinez (2006), the crossover rate was set to 0.5 and mutation rate was the reciprocal of 204

the parameter dimension. Settings of population size and maximum model runs can 205

substantially affect the performance of GA for calibrating SWAT, a small population size of 206

50 and a maximum number of SWAT runs of 5000 were selected in this study following207

Zhang et al. (2009c).208

2.4 Bayesian Model Averaging209

In hydrologic modeling, there are many ensemble based methods that can merge 210

information from multiple sources (e.g. modeling results from different models and observed 211

data from different sources). One simple method is the arithmetic mean method, which 212

simply averages the predictions from several sources equally to obtain the ensemble mean 213

prediction. This method has shown more reliable prediction than single model prediction 214

(Raftery et al. 2005; Hsu et al., 2008). Recently, advanced BMA was proposed to combine 215

multiple weather and hydrologic models results to provide more reliable predictions (e.g. 216

Raftery et al. 2005; Ajami et al., 2006; Duan et al., 2007; Vrugt et al., 2007). BMA is a 217

standard approach to inference in the presence of multiple competing models (Raftery and 218

Zheng, 2003). This approach has been used to infer probabilistic predictions that possess 219

more skill and reliability than the original ensemble members produced by several competing 220

models (Duan et al., 2007). In BMA, the probabilistic distribution of a hydrologic prediction 221

y is the weighted average of the posterior distribution of each model under consideration. 222

Raftery et al. (2005) extended BMA from statistical models to weather forecast models. In 223

the following, the BMA framework developed by Raftery et al. (2005) was introduced. The 224

BMA prediction probability distribution can be represented as225
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1
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where K is the number of competing models and k is the index of each model.  kf denote the 228

bias corrected prediction of a candidate model kM . kw is )|( Dfp k ,  the posterior 229

probability of model prediction kf , also known as the likelihood of model prediction kf230

being the correct prediction given the observational data, D . kw is nonnegative and with a 231

sum ( 

K

k kw
1

) of 1. )|( kfyg represents the conditional probability distribution function232

(PDF) of y conditional on kf .  Usually, the conditional distribution )|( kfyg can be 233

represented as a normal distribution, ),( 2
kkkk fbaN  , where ka and kb are regression 234

coefficients obtained through least square linear regression.  Following Raftery et al. (2005) 235

and Duan et al. (2007), the BMA predictions mean and variance can be calculated as 236
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 (4)238

where 2
k is the variance associated with model prediction kf with respect to calibration data 239

D . The BMA prediction mean is the weighted average of individual predictions weighted by 240

the likelihood )|( Dfp k . It can be viewed as a deterministic prediction and compared with 241

other individual predictions in the ensemble and ensemble mean.  The two terms of the right-242

hand side of equation (4) represent the between-prediction variance and within-prediction 243

variance, respectively. The BMA predicts spread-error correlation, and also accounts for the 244

possibility that ensembles may be underdispersive, which is usually the case in ensemble 245

predictions (Raftery et al., 2005).246
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In order to apply the BMA method, the weights kw and variance 2
k need to be 247

estimated. In this study, the maximum likelihood estimation (MLE) method was adopted 248

following Raftery et al. (2005). Let },,,,,,,{ 22
2

2
121 KKwww   . The log form of the 249

likelihood needs to be maximized is250









 



K

k
kk fygw

1

)|(log)( (5)251

It is difficult to analytically maximize this log likelihood. In this study, the Expectation and 252

Maximization (EM) was used to find the maximum likelihood estimator. EM algorithm is 253

iterative. It starts with a initial guess of 0 . Then the EM algorithm alternates between the 254

Expectation step and Maximization step to update the estimation of Iter , where Iter is the 255

iteration number. Finally, the Expectation step and Maximization step converge and are256

stopped when there is no significant change, measured by a small tolerance value, between 257

two consecutive iterative log likelihood estimations. Following Raftery et al. (2005) and258

Duan et al. (2007), the procedures of applying EM algorithm to estimate kw and 2
k are 259

briefly described in Appendix A. The probabilistic predictions of the variable of interest can 260

be derived based each individual deterministic prediction and its weight and variance. The 261

procedures used in this study to generate probabilistic predictions at each time step t are 262

briefly described as follows (Gelman et al., 2003): i) select an individual competing model 263

( kM ) with the probability proportional to its weight; ii) draw a replication repy from 264

)|( ,tkt fyg ; iii) repeat steps i and ii to obtain 1000 values that represent the distribution of 265

ty , with which the uncertainty intervals can be derived. For example, the 90% interval is 266

within the range of the 5% and 95% quartiles. Similarly, other uncertainty intervals with 267

different expected coverage percentage can be derived straightforward.268

2.5 Generating competing hydrologic predictions of SWAT269
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Hydrologic environments are open and complex, rendering them prone to multiple 270

interpretations and mathematical descriptions (Neuman, 2003). In practical application of 271

hydrologic model, modelers typically select a single model among the several choices that is 272

assumed to best represent the hydrologic system. The major advantage of BMA is to jointly 273

use several model structures identified as plausible by the modelers. For the selection of 274

candidate models for BMA, it is suggested to use previous research and theory to specify the 275

set of model structures that are plausible and supported by data (Gelman and Rubin, 1995; 276

Raftery et al., 2005; Duan et al., 2007; Vrugt et al., 2007; Montgomery and Nyhan, 2008). In 277

this study, we followed the methodology used in previous literature on model structures 278

selection. In the selection of model structure, we used the information provided in previous 279

literature on SWAT (Neitsch et al., 2005a, 2005b) and the actual watershed characteristics. 280

The purpose of this paper is to illustrate the application of GA and BMA for combining 281

several plausible model structures within SWAT framework. It is out of the scope of this 282

study to explore all possible model structures.283

The SWAT model has several options for setting its model structures. Different 284

evapotranspiration, snow accumulation and melt, and flow routing algorithms are available285

within the SWAT model system. In the LREB, as snowfall and melt is not an important 286

process, we set up SWAT model structures by selecting different evapotranspiration and flow 287

routing algorithms. For the potential evapotranspiration, Penman-Monteith “PM”, Priestley-288

Taylor “PT”, and Hargreaves “HG” were selected. For flow routing, Variable Storage “VS” 289

and Muskingum “MK” were selected. Thus, SWAT_PM_VS denotes SWAT with Penman-290

Monteith potential evapotranspiration estimation and variable storage flow routing. A total of 291

six model structures were defined, that is, SWAT_PM_VS, SWAT_PM_MK, 292

SWAT_PT_VS, SWAT_PT_MK, SWAT_HG_VS, and SWAT_HG_MK. The evaluation 293

time scale selected for the LREB was day. In the YRHB, we only choose three models with 294
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different snowfall and melt algorithms, because snow processes are significant (Zhang et al., 295

2008a) and the evaluation time scale was month. Previous studies (e.g. Fontaine et al., 2002; 296

Zhang et al., 2008a) have shown that the SWAT model simulation is sensitive to snow 297

routing methods in mountainous basin. The snow routing methods used in this study include 298

the degree day “DD”, DD plus elevation band “ELEV”, and the energy based SNOW17299

methods. The SWAT models with different snow modules are represented as SWAT-DD, 300

SWAT-ELEV, and SWAT-SNOW17, respectively. The GA was applied to optimize the 301

SWAT models with different structures in the LREB and YRHB. In the LREB, daily 302

streamflow from 1999 to 2000 was used to calibrate model and daily streamflow from 2001 303

to 2002 was used to validate the model.  Watershed weighted annual precipitation for this 304

period for LREB varied from a high of 1085 mm observed in 2000 to a low of 884 mm 305

observed in 1999.  Precipitation and flow for both the calibration and validation periods were 306

slightly below long term means. For the YRHB, monthly flow from 1976 to 1985 was used to 307

calibrate model and monthly flow from 1986 to 1990 was used to validate the model.  308

Precipitation for this period varied from 653 mm to 482 mm. Precipitation and flow of the 309

selected periods in the YRHB are very close to long term average conditions. The calibrated 310

models with smallest sum square error in the LREB and YRHB serve as competing models 311

for the BMA, and the BMA mean and prediction uncertainty interval are calculated.312

2.5 Statistical criteria for evaluating the performance of hydrologic prediction313

Different statistical criteria were used to evaluate the individual SWAT model 314

predictions, ensemble mean, BMA mean, and the uncertainty intervals obtained by the BMA. 315

Following Santhi et al. (2001) and Moriasi et al. (2007), the evaluation coefficient for 316

deterministic predictions include Percent Bias (PBIAS), Coefficient of Determination (R2), 317

and Nash-Sutcliffe Efficiency (NSE). PBIAS is calculated as318
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where tf is the model simulated value at time unit t , ty is the observed data value at time 320

unit t ,  and Tt ,,2,1  . PBIAS measures the average tendency of the simulated data to be 321

larger or smaller than their observed counterparts (Gupta et al., 1999). PBIAS values with 322

small magnitude are preferred. Positive values indicate model overestimation bias, and 323

negative values indicate underestimation model bias (Gupta et al., 1999).324

The formula for calculating coefficient R2 is 325
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where y is the mean of observed data value for the entire time period of the evaluation, f is 327

the mean of simulated data value for the entire time period of the evaluation. The other 328

symbols have the same meaning defined above. R2 is equal to the square of the Pearson’s 329

product-moment correlation coefficient (Legates and McCabe, 1999). It represents the 330

proportion of the total variance in the observed data that can be explained by the model. R2331

ranges between 0.0 and 1.0. Higher values mean better performance. 332

NSE is calculated as333

     


T

t
t

T

t
tt yyfyNSE

1

2

1

20.1 (8)334

NSE indicates how well the plot of the observed value versus the simulated value fits the 1:1 335

line, and ranges from  to 1 (Nash and Sutcliffe, 1970). The larger the NSE values, the 336

better model performance.337

In hydrologic modeling, different types of uncertainty limits can be recognized (e.g. 338

Beven, 2006; Liu and Gupta, 2007). In this study, we are concerned with the modeling 339
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uncertainty and predictive uncertainty (Liu and Gupta, 2007). The modeling uncertainty 340

limits, obtained through calibrating hydrologic models to match observed streamflow data, 341

were expected to include a specified proportion of the calibration data set. The predictive 342

uncertainty limits, obtained through applying the calibrated models to another independent 343

data set, were expected to contain a specified proportion of future observations. In this study, 344

the percentage of coverage (POC) of observations in the uncertainty interval was used to 345

evaluate the uncertainty intervals obtained by the BMA scheme. The smaller difference 346

between POC and the expected coverage percentage of an uncertainty interval indicate better 347

performance of the estimated uncertainty interval. For a 90% uncertainty interval, which is 348

expected to include 90% of the observed data, the POC value closer to 90% indicate the 349

better performance of the uncertainty interval estimation. 350

3. RESULTS AND DISCUSSION351

3.21Calibration and uncertainty analysis results in the LREB352

The evaluation coefficients of the simulated daily streamflow by different prediction 353

techniques in the LREB are listed in Table 2. The two sample Kolmogorov–Smirnov test (K–354

S test) (Chakravarti et al., 1967) reveals that the difference between the simulated results by 355

models with default input and those calibrated by GA is significant at a significant level of 356

0.05. This indicates that model calibration can substantially improve model simulation. The 357

calibrated parameters for the six models in the LREB are shown in Table 3, which clearly 358

show that different model structure prefer different parameter values. For example, the 359

calibrated values of CN range between -17% and 20%. For illustration purpose, the simulated 360

daily streamflow by the different methods in March, 1999 and in March, 2001 are shown in 361

Figures 2 and 3 for calibration and validation periods, respectively. The ensemble mean and 362

BMA mean predictions were also plotted for comparison purpose. From Figures 2 and 3, 363

there is obvious difference between the hydrographs simulated by different models, 364
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especially in the validation period. At a significant level of 0.05, the K-S test results show 365

that there is significant difference between different model simulation results. The evaluation 366

coefficients in Table 2 confirmed the difference between different models. For example, in 367

calibration period, SWAT-HG-VS obtained PBIAS of -0.72%, while the PBIAS value of 368

SWAT-PM-VS was 24.9%. The performance of calibrated models in validation period is 369

different from that in calibration period. For example, the PBIAS values of SWAT-PT-VS 370

increased from 22.94% in calibration period to 46.82% in validation period. Analysis of other 371

evaluation coefficients also shows the difference between model performance in calibration 372

and validation period (Table 2). The difference between model performance in calibration 373

and validation periods is because the hydrologic conditions in validation period may change 374

and do not look exactly like the hydrologic conditions during the calibration period (e.g. 375

Beven, 2006; Liu and Gupta, 2007; Zhang et al., 2009a). The different properties exhibited376

by various models were combined by the arithmetic ensemble mean and Bayesian model 377

averaging methods. The comparison of the evaluation coefficients of each single model and 378

those of the ensemble based methods indicate the obvious superiority of applying ensemble 379

based methods. Compared with single models predictions, the simple arithmetic ensemble 380

mean obtained better results in terms of R2, and NSE during both calibration and validation 381

period. The BMA outperformed all the other seven methods in terms of all four evaluation 382

coefficients in both calibration and validation periods. The above analysis clearly illustrates 383

the advantage of using ensemble based methods to obtain reliable deterministic streamflow 384

simulation, especially the Bayesian Model Averaging. 385

The 66.7% and 90% uncertainty intervals estimated by the BMA are shown in Figures 4 386

and 5 for calibration and validation periods, respectively. The estimated 66.7% and 90% 387

uncertainty intervals cover about 76.04% and 91.14% of the observed data, respectively, in 388

calibration period, and about 74.41% and 96.53% of the observed data, respectively, in 389
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validation period. The absolute differences between the POCs values computed from the 390

uncertainty intervals estimated by the BMA and expected coverage percentages are within 391

10%. In general, the POC values estimated by BMA are matching well with the expected 392

coverage percentage.393

3.2 Calibration and uncertainty analysis results in the YRHB394

The evaluation coefficients of the simulated monthly streamflow by different prediction 395

techniques in the YRHB are listed in Table 4 for different prediction techniques. The K-S test 396

results indicate that the difference between the simulated results by models with default input 397

and those calibrated by GA is significant at a significant level of 0.05, which emphasize the 398

importance of parameter calibration. The calibrated parameters (Table 5) for the three models 399

also exhibit very different values in the YRHB. Using different snow routing methods can 400

lead to variation of calibrated CN values from 2% to 14%. For illustration purpose, the 401

simulated monthly streamflow by the different methods in 1976 and in 1986 are shown in 402

Figures 6 and 7 for calibration and validation periods, respectively. Similar to the case in the 403

LREB, the hydrographs simulated by the three models with different snow routing algorithms 404

have pronounced differences. The SWAT-DD model consistently underestimates the 405

streamflow, with PBIAS values of -17.71% and -17.98% for calibration and validation 406

periods, respectively. The SWAT-SNOW17 model obtained positive PBIAS values less than 407

10% for both calibration and validation periods. The arithmetic ensemble mean and BMA 408

mean predictions consistently obtained better performance in terms of R2, and NSE than 409

single model based predictions. In terms of PBIAS, BMA mean outperformed all the other 410

methods in calibration period, while it performed less than SWAT-ELEV in validation 411

period. But BMA mean still predicted small PBIAS value (less than 5%) in the validation412

period. In the YRHB test case, BMA provided better deterministic prediction than the best 413

ensemble number in calibration period and similar results in validation period.414
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The uncertainty intervals with different expected coverage percentages estimated by 415

BMA are shown in Figures 8 and 9 for the calibration and validation periods, respectively. 416

The differences between the estimated POC values by BMA and the corresponding expected 417

coverage percentages are within 6% for both calibration and validation periods. The 418

estimated 66.7% and 90% uncertainty intervals cover about 64.2% and 87.5% of the observed 419

data, respectively, in calibration period, and about 68.67% and 91.67% of the observed data, 420

respectively, in validation period. This good match indicates the validity of using only three 421

ensemble members to estimate the uncertainty of hydrologic predictions.422

3.4 Discussion423

The test results in the two contrasting basins indicate the combination of GA and BMA 424

holds promise to be an efficient and effective technique to calibrate SWAT model and 425

provide reasonable estimation of prediction uncertainty. The numbers of model runs of 426

SWAT are 30000 and 15000 in LREB and YRHB, respectively. These numbers of model 427

runs reported in this study is much less than those reported in previous studies. For example, 428

two previous studies that applied MCMC for SWAT reported 45000 (Yang et al., 2008) and 429

200000 (Zhang, 2008b) model runs. In addition, in contrast to MCMC methods which usually 430

require thousands of SWAT runs, one only needs to run several competing SWAT models 431

with different model structures to assess water resources effect of different management and 432

global change scenarios. For the computationally intensive SWAT model, the method used in 433

this study has the potential to save enormous computational resources and time. It is still 434

important to note that the time consumed by calibrating one model structure is intensive. We 435

calibrated the candidates SWAT models on a computer with Pentium IV 3 GHZ and 1GB 436

RAM. In the LREB, calibration of each of six model structures took about 3 days. A total of 437

18 days were spent on model calibration for the six model structures in the LREB. In the 438

YRHB, calibration time consumed by SWAT-DD, SWAT-ELEV, and SWAT-SNOW17 was 439
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3 days, 5 days, and 25 days, respectively. Given the enormous time consumed by 440

constructing candidate model structures for BMA, using as small number of candidates as 441

possible is very important. We tested the effect of reducing number of models on BMA 442

prediction. In the LREB, we eliminated the candidate model with less NSE in sequence until 443

there were only two models remaining. The calculated PBIAS, R2, NSE, and POC values for 444

each combination of model structures are listed in Table 5. The difference between these 445

evaluation coefficients is very small. For example the NSE values range between 0.8 and 0.81 446

in calibration period and between 0.84 and 0.86 in validation period. The difference between 447

POC values are less than 5% for both 66.7% and 90% intervals. It is worth noting that the 448

PBIAS value reached 10% in validation period when using 2 candidate models. This 449

compares to the PBIAS values less than 5% for the other combinations of candidate models. 450

Further test in the YRHB show that the evaluation coefficients obtained with two candidate 451

models (SWAT-ELEV and SWAT-SNOW17) are also very close to those calculated using all 452

three models. Overall, reducing number candidate models does not have substantial effect on 453

the performance of BMA in the two case studies. This result is similar to that in Raftery et al. 454

(2005). Considering the relatively large PBIAS value obtained by using two candidate models 455

in LREB, it is suggested that three or more model structures are needed for BMA. As 456

hydrologic conditions are varying from site to site, much care should be taken when transfer 457

the results to other basins.458

There are several limitations of the method used in this study. It is also worth noting 459

that the BMA mean prediction can not always outperform the other models predictions for all 460

the evaluation coefficients. For example, in the YRHB, the BMA mean predicted larger 461

PBIAS than SWAT-ELEV and performed almost the same as the simple arithmetic ensemble 462

mean in validation period. The K–S test results show that the BMA mean prediction is 463

significantly different from all ensemble members in LREB at a significance level of 0.05. 464
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While in YRHB, the BMA mean is significantly different from all ensemble members at 465

significance level of 0.2. As significance level of 0.05 is commonly used in hydrologic 466

modeling, the results indicate that the relatively complex BMA analysis did not necessarily 467

show significant improvement. The discrepancy between POC values obtained by the BMA 468

and the expected coverage percentage, which reached about 10% and 6% respectively in the 469

LREB and YRHB, respectively, also shows the BMA methods can be further improved. 470

These inadequacies of the BMA method may be caused by several reasons: i) the uncertainty 471

associated with the input data was not explicitly accounted for. For example, the precipitation 472

uncertainty may have important effect on uncertainty estimation (Kavetski et al., 2006);  ii) 473

the residuals between simulated and observed streamflow data are assumed to independent, 474

which may not be true in real world problems (Kuczera and Parent, 1998; Yang et al., 2007);  475

iii) the prior knowledge of different uncertainty sources, which may affect the uncertainty 476

estimation (Zhang et al., 2009a), was not explicitly considered in the BMA scheme. In the 477

future, incorporating more sources of uncertainty into account (Kuzera et al., 2006) may 478

improve the performance of this method. Methods on incorporating input data uncertainty, 479

obtaining prior knowledge of model, and considering correlation between residuals deserve 480

further research for improving the reliability of SWAT predictions. Another limitation of this 481

method is that the application of GA for parameter estimation took very long time. The 482

expensive computational cost is limiting the use of this method. In the future, incorporating 483

surrogate model (e.g. Zhang et al., 2009b) and parallel computing techniques (e.g. Vrugt et 484

al., 2006) into the model calibration process is a promising research topic.485

For water resources investigations essential for relevant decision making processes, the 486

predictive uncertainty estimation associated with hydrologic simulation is valuable. 487

Predictive uncertainty limits are dependent on and different from modeling uncertainty. This 488

is because when the calibrated hydrological models are applied to another set of data 489
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independent of the calibration data, the hydrologic conditions may change and therefore 490

impact the predictive interval estimation (Beven, 2006; Liu et al., 2008; Zhang et al,. 2009a).491

The results obtained in the two test basins show that the percentage of coverage values of 492

modeling and predictive uncertainty intervals can be different from each other. In the YRHB, 493

the predictive uncertainty interval included more observed data than the modeling uncertainty 494

intervals. For example, POC value of the 90% interval is 4% less in calibration period than 495

that in validation period. In the LREB, the modeling uncertainty intervals in calibration 496

period included more observed data for 66.7% interval than the corresponding predictive 497

uncertainty intervals in validation period, while the 90% modeling uncertainty interval498

included about 5% less observed data than the 90% predictive uncertainty interval. Because 499

of the future uncertainties due to natural and anthropogenic factors, the predictive uncertainty 500

limits are also uncertain, which means that we are unable to estimate predictive uncertainty 501

limits even if our estimation of modeling uncertainty limits are accurate. Hence in application 502

of uncertainty analysis for hydrologic prediction, how to extend modeling uncertainty limits 503

to predictive uncertainty limits remains a challenge for applying hydrologic models to water 504

resources-related management and design problems.505

4. CONCLUSIONS506

In this paper, we presented the application of GA and BMA to simultaneously conduct 507

calibration and uncertainty analysis of SWAT. The methodology provides a practical and 508

flexible tool for jointly using multiple model structures within the SWAT model system. This 509

method was tested in two basins. In the LREB, we selected six SWAT models with different 510

evapotranspiration and flow routing algorithms, and tested this method using daily 511

streamflow. In the YRHB, we selected three SWAT models with different snow routing 512

modules, and used monthly streamflow data to test this method. The test results show that 513

this combined method can provide deterministic predictions better than or comparable to the 514
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best calibrated model using GA. Further inspection of the 66.7% and 90% uncertainty 515

intervals show that the combination of GA and BMA can provide reasonable uncertainty 516

estimation. The differences between the computed percentage of coverage values and the 517

corresponding expected coverage percentages are within 10% for both calibration and 518

validation periods in these two test basins. It is anticipated that the combination of GA and 519

BMA methods will have significant implications related to policy development. The method 520

reduces the uncertainty associated with selecting any single model, thereby increasing the 521

level of confidence in the simulation results. This is a critical component of policy 522

assessments which are based upon modeling results and one which will become more routine 523

in the future.524
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Appendix A:531

1. Initialization:532
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coefficients ka and kb for each candidate model using linear regression.534

where T is the total number of data points in the calibration period, and Iter is the iteration 535

number.536

2. Computing the initial likelihood:537
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3. Executing the expectation step541
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4. Executing the maximization step544

Compute the weight for each model: 
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Update the variance of each model:  
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5. Update the likelihood )( Iterθ using equation A1547

6. Checking convergence:548

If )( Iterθ - )( 1Iterθ is less than or equal to a pre-specified tolerance level (10-6), stop; else go 549

back to Step 3.550
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727

Table 1 Parameters for calibration in SWAT model.728

Parameter Description Range

1 CN2 Curve Number ±20%

2 ESCO Soil Evaporation compensation factor 0-1

3 SOL_AWC Available soil water capacity ±20%

4 GW_REVAP Ground water re-evaporation coefficient 0.02-0.2

5 REVAPMN
Threshold depth of water in the shallow aquifer 
for re-evaporation to occur (mm).

0-500

6 GWQMN
Threshold depth of water in the shallow aquifer 
required for return flow to occur (mm)

0-5000

7 GW_DELAY Groundwater delay (days) 0-50

8 ALPHA_BF Base flow recession constant 0-1

9 RCHRG_DP Deep aquifer percolation fraction 0-1

10 CH_K2
Effective hydraulic conductivity in main channel 
alluvium (mm/hr)

0.01-150

11 SURLAG Surface runoff lag coefficient (day) 0-10
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Table 2 Evaluation coefficients for the six SWAT models, arithmetic mean, and BMA mean 729

in the LREB for both calibration and validation periods.730

Coefficients

Models

Calibration Validation

PBIAS R2 NSE PBIAS R2 NSE

SWAT-HG-MK -0.72% 0.76 0.74 -8.24% 0.82 0.71

SWAT-HG-VS 6.66% 0.76 0.75 27.07% 0.81 0.76

SWAT-PM-MK 23.90% 0.77 0.76 35.13% 0.82 0.8

SWAT-PM-VS 24.04% 0.72 0.71 39.77% 0.8 0.75

SWAT-PT-MK 11.26% 0.79 0.78 23.49% 0.85 0.74

SWAT-PT-VS 22.94% 0.71 0.7 46.82% 0.77 0.5

Ensemble Mean 14.60% 0.81 0.79 27.34% 0.86 0.84

BMA mean 0.00% 0.81 0.81 3.07% 0.87 0.86
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Table 3 Calibrated parameter values for the six models in LREB.731

Model

Parameter

SWAT_

HG_MK

SWAT_

HG_VS

SWAT_

PM_MK

SWAT_

PM_VS

SWAT_

PT_MK

SWAT_

PT_VS

CN 9% -17% 8% -17% 6% 20%

ESCO 0.46 0.89 0.88 0.91 0.38 0.78

Surlag 9.99 2.8 9.78 1.1 9.69 2.3

ALPHA_BF 0.23 0.61 0.17 0.45 0.37 0.55

GW_REVAP 0.15 0.15 0.2 0.2 0.08 0.1

SOL_AWC 7% -20% 18% 16% 18% 25%

CH_K2 144 147 146 130 131 147

GW_DELAY 22.57 3.7 18.87 2.19 22.8 3.07

RCHRG_DP 0.79 0.01 0.66 0.45 0.33 0.68

GWQMN 9.16 103.44 45.91 103.69 95.14 168.81

REVAPMN 215.14 24.59 486.46 402.32 263.62 190.1

732

733

Table 4 Evaluation coefficients for the three SWAT models, arithmetic mean, and BMA 734

mean in the YRHB for both calibration and validation periods.735

Coefficients

Models

Calibration Validation

PBIAS R2 NSE PBIAS R2 NSE

SWAT-DD -17.71% 0.82 0.77 -17.98% 0.84 0.78

SWAT-ELEV -4.63% 0.85 0.84 -0.31% 0.83 0.83

SWAT-SNOW17 4.76% 0.87 0.84 7.12% 0.85 0.78

Ensemble Mean -5.86% 0.88 0.87 -3.72% 0.87 0.87

BMA Mean 0.00% 0.88 0.88 3.71% 0.87 0.87

736

737

738
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Table 5 Calibrated parameter values for the three models in YRHB.739

Parameter

Model
CN ESCO Surlag ALPHA_BF GW_REVAP

SWAT-DD 14% 0.28 4.90 0.16 0.03

SWAT-ELEV 7% 0.36 3.80 0.33 0.04

SWAT_SNOW17 2% 0.18 7.40 0.51 0.08

740

741

Table 6 Evaluation coefficients obtained using different number of candidate models in BMA 742

in the LREB.743

Coefficients

Number of 
Candidate 
models

Calibration Validation

PBIAS R2 NSE
66.7% 
POC

90% 
POC

PBIAS R2 NSE
66.7% 
POC

90% 
POC

6 0.00% 0.81 0.81 76.04% 91.14% 3.07% 0.87 0.86 74.41% 96.53%

5 0.00% 0.81 0.81 75.34% 91.32% 1.02% 0.86 0.86 74.15% 92.93%

4 0.00% 0.81 0.8 74.33% 90.99% 1.32% 0.86 0.86 73.89% 94.94%

3 0.00% 0.80 0.8 73.96% 91.71% 3.21% 0.86 0.85 73.36% 94.01%

2 0.00% 0.80 0.8 75.89% 93.15% 10.58% 0.85 0.84 77.02% 95.08%

744

745

746



ACCEPTED MANUSCRIPT 

34

List of Figures

Figure 1 The locations of the test basins.
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