History of Model Development at Temple, Texas

J. R. Williams and J. G. Arnold
INTRODUCTION

• Model development at Temple
 ➢ A long history (1937-present)
 ➢ Many scientists participating in:
 Data collection
 Component construction
 Structural design
 Validation
 Application
INTRODUCTION

• Model construction—a small group at Temple
 – USDA-Agricultural Research Service (ARS)
 – Texas AgriLIFE Research
 – USDA-Natural Resources Conservation Service (NRCS)

• Components, equations, etc.
 – Contributed by many scientists worldwide
 – Worldwide Scientific link provided
 – Additional expertise needed to develop comprehensive models
INTRODUCTION

TEMPLE MODELS

• ALMANAC, EPIC, APEX, SWAT
 – Operate on spatial scales ranging from individual fields to river basins
 – Daily time step
 – Continuously updated and improved as a result of user interaction and feedback
DATA COLLECTION-
RIESEL

• Blackland Experimental Watershed-hydrological data collection program
 – Established in 1937 near Riesel, TX.
 – 57 rain gages and 40 watersheds
 – Established to analyze the impact of land use practices on:
 • soil erosion
 • flood events
 • water resources
 • agricultural economy
MODEL DEVELOPMENT

• Started with hydrograph development and flood routing research in 1965
 – Background
 • 2.5 years experience in SCS flood control
 • New TR-20 flood routing model
 • Data from Riesel used in developing & testing hydrological models
 – Early models were single event models used as building blocks for today’s models
 • Focused on surface water hydrology and sediment yield
SURFACE RUNOFF

- SCS curve number method
- Green & Ampt infiltration equation

Used in EPIC, APEX and SWAT
UNIT HYDROGRAPH MODEL

- Two parameter gamma distribution
 - Rising limb
 - Peak
 - Recession to inflection point

- Exponential recession limb
 - Inflection point to base flow or zero

- For simulating runoff hydrographs from small Texas Blackland watersheds

- (1968)
Tests showed recession limb depleted too rapidly in many cases.

Hydrograph modified:
- Two parameter gamma distribution
- Double exponential recession limb

(1973)
FLOOD ROUTING

• Variable travel time method (VTT)
• VTT converted to Variable storage coefficient (VSC)
 – Improve accuracy of storage flood routing
 – Convenience in computer solutions
 – Accounts for variation in travel time
 – Maintains correct water balance
 – Later included effects of water surface slope (Williams, 1975)
 – Included in APEX and SWAT

• (1969)
HYMO

• Problem oriented computer language
 – Consisted of
 • Runoff curve number
 • Unit hydrograph
 • VSC flood routing method
 • MUSLE (sediment yield)

• (1972)
MUSLE

- Single storm event sediment yield
- Introduced runoff energy factor
- Eliminated need for delivery ratio
 - Runoff factor represents energy used in detaching and transporting sediment
- (1975)
SEDIMENT ROUTING

• Based on
 – MUSLE
 – Exponential function of travel time and particle size
 – One routing coefficient determined for all sub-areas in a watershed
 – Provided estimates of sediment deposition from subarea outlet to watershed outlet
 – Did not locate deposition
 – Ignored degradation

• (1975)
SEDIMENT ROUTING

• Worked in conjunction with flood routing model
 – Transported sediment from reach to reach adding subarea contributions as flow was routed downstream
• Deposition similar to previous model
• Degradation component developed
 – Bagnold’s stream power equation
• Applies to individual routing reaches
• (1978)
SEDIMENT ROUTING

• Current model used in APEX and SWAT
• Modified Bagnold
 – Sediment concentration function of
 • Flow velocity
 • Sediment load
 • Particle size
 • Vegetative cover
 • Soil erodibility

• (2000)
WIND EROSION

• EPIC wind erosion model
 – Modified Manhattan, KS model (WEQ)
 • Converted annual to daily time step
 – Simulated
 » Vegetative cover
 » Tillage effects

• (1984)
WIND EROSION

• Current EPIC/APEX model
 – Wind Erosion Continuous Simulation (WECS)
 – Revised original model
 • Driven by daily wind speed
 – Bagnold’s equation
 • Function of daily wind run
 – Wind direction
 – Field orientation

• (1995)
CROP GROWTH

- CERES model
 - Simulated crop growth and yield in uniform field
 - Maize and wheat
 - Simulates effect on development, growth & yield as a function of:
 - Cultivar
 - Plant population
 - Weather
 - Soil

- (1986)
CROP GROWTH

• EPIC crop model
 – Used some concepts from CERES
 – Generic model simulates 100+ crops
 • Annuals/perennials
 • Field crops/pastures
 • Legumes
 • Trees/shrubs
 • Unique parameters for each crop

• (1989)
CROP GROWTH

• ALMANAC crop model
 – Based on EPIC crop model
 – Plant competition (up to 10 crops)
 • Assess impact of weeds on crop yields
 • Grown in same space
 • Compete for
 – Water
 – Nutrients
 – Light
WEATHER SIMULATION

• WGEN
 – Simulated daily
 • Precipitation
 • Temperature (max and min)
 • Radiation
 • Wind speed and direction

• (1981)
WEATHER SIMULATION

• WXGN
 – Combination of WGEN and CLIGEN
 – Used in all Temple Models
 – Simulates daily
 • Precipitation
 • Temperature (max and min)
 • Radiation
 • Relative humidity
 • Wind speed and direction

• (1984)
WATER YIELD MODEL

- Developed to estimate water yield from agricultural watershed
- Based on SCS curve number
- Continuous daily time step
- Soil moisture accounting
 - Driven by pan evaporation
 - One parameter optimized to match average annual water yield
- (1976)
CREAMS

• Designed to evaluate non-point source pollution from field-size areas

• Components
 – Hydrology
 – Erosion
 – Nutrients
 – pesticides

• Daily time step hydrology
 – Surface runoff estimation
 • Based on SCS water yield model
 • Infiltration approach
 – Added ET and percolation

• Later revised to become GLEAMS
 – Emphasized pesticide fate

• (1980)
SWRRB

• Based on CREAMS daily hydrology
• Watershed scale
 – Subdivided
 – Spatial weather generator (CLIGEN)
 – Water and sediment yield (MUSLE)
 – Water & sediment balances for ponds and reservoirs
• Provided the basis for SWAT

• (1985)
SWRRB APPLICATIONS IN U.S. – 1980’S

- National Oceanic and Atmospheric Administration (NOAA) National Coastal Pollutant Discharge Inventory
- U.S. Environmental Protection Agency Pesticide Registration Model
EPIC
ENVIRONMENTAL POLICY INTEGRATED CLIMATE MODEL

• Designed to define the erosion-productivity relationship throughout the U.S.
• Field scale
• Components
 – Weather simulation
 • Weather generator
 – Hydrology
 • Runoff (CN or Green and Ampt)
 – Erosion-sedimentation
 • Wind and water
 – Nutrient cycling
• (1984)
EPIC

• Components continued
 – Plant growth
 – Tillage
 – Soil temperature
 – Economics
 – Management

• (1984)
EPIC

• Applications
 – Used to evaluate soil erosion impacts for 135 U.S. land resource regions
 – AUSCANE model (spin-off of EPIC) created to simulate Australian sugarcane production
 – Assessed the impacts of future climate change on U.S. corn, soybean, alfalfa, and wheat yields
 – Assessed impacts of typical Mayan culture agricultural cropping systems and practices on erosion and development of Mayan civilization
 – Assessed irrigation timing and amount strategies for sunflower in Southern Italy to determine critical growth stage for irrigation application
APEX
AGRICULTURAL POLICY / ENVIRONMENTAL EXTENDER MODEL

• Whole farm/watershed scale
• Subarea component (EPIC)
• Routing (water, sediment, nutrients, pesticides)
• Groundwater & reservoir
• Feedlot dust distribution
• Daily time step
• Capable of simulating 100’s of years
• (2000)
• Management capabilities
 – Irrigation
 – Drainage
 – Furrow diking
 – Buffer strips
 – Terracing
 – Waterways
 – Fertilization
 – Manure management
 – Lagoons

 – Reservoirs
 – Crop rotation and selection
 – Pesticide application
 – Grazing
 – Tillage
APEX

• Applications
 – Evaluate effects of global climate/CO\textsubscript{2} changes
 – Design environmentally safe, economic landfill sites
 – Design biomass production systems for energy
 – Livestock farm and nutrient management (manure and fertilizer)
 – Forest management
 – Evaluate effects of buffer strips nationally
 – Simulate runoff, erosion/sediment yield, nutrient and pesticide losses from cropland in the U.S. (CEAP)
SWAT
SOIL AND WATER ACCESSMENT TOOL

- Basin scale
- Based on SWRRB
- Readily available input—physically based
- Comprehensive-Process interactions
- Simulates streamflow (not just water yield),
 - subsurface flow (tile drainage)
 - groundwater flow
 - lateral flow

Upland Processes

Channel/Flood Plain Processes
SWAT

- **Upland Processes:**
 - Weather
 - Sedimentation
 - Plant Growth
 - Nutrient Cycling
 - Hydrology (impoundment, irrigation, subsurface)

- **Continuous Time**
 - Daily Time Step (sub-hourly)
 - 1 Day to 100s of Years

- **Links with APEX, EPIC, ALMANAC**

- **AVSWAT-X interface**
 (SSURGO soils, splitting tools, auto-calibration and uncertainty tools)

- **Pesticide Dynamics**
- **Soil Temperature**
- **Management (Agricultural & Urban)**
- **Bacteria**
SWAT

• Applications
 – Simulated hydrologic and/or pollutant loss impacts of agricultural & municipal water use, tillage and cropping systems trends (HUMUS)
 – Assess benefits of different conservation practices at scale national scale (CEAP)
 – Perform U.S Environment Protection Agency Total Maximum Daily Load (TMDL) analyses for impaired waters
 – Quantify the impacts of climate change
 – U.S. Environmental Protection Agency HAWQS National Environmental Assessment
PARTICIPATION IN OTHER MODEL DEVELOPMENT

• GLEAMS
• SPUR
• WEPP
• WEPS
• NLEAP