Modelling Onsite Wastewater Systems in SWAT

J. Jeong, C. Santhi, J. G. Arnold, R. Srinivasan

Texas AgriLife Research
Contents

- Overview
- Motivation
- Biozone algorithm
- SWAT integration
- Assumption/limitation
- SWAT data processing
- Study area
- Calibration/validation
- Conclusion
Definition: Decentralized wastewater treatment systems for treating domestic wastewater in rural areas

More than 20% (26.1 million) of total U.S. housing units are served by OWSs

OWSs are a cause of significant non-point source pollution

SWAT2005 does not have algorithms that directly simulate OWSs
Types of OWS

❖ **Conventional Systems**
 - Most common type of OWSs with septic tank and drain field
 - No pretreatment other than a septic tank

❖ **Advanced Systems**
 - Systems with specially designed pretreatment process (e.g. sand filter, wet lands, biofilter, UV disinfection)
 - Database collected for 24 different types advance system

❖ **Failing Systems**
 - Aged systems that do not work as designed due to clogging after 15~25 years of service
 - System failure rate increases > 70% after 25 years operation
 - Hydraulic failure - backup of STE to the sink or ground surface
 - Pollutants can be released to the reach via surface runoff or groundwater flow
Biozone is a zone of biologically active treatment layer in the soil matrix
Biozone is developed due to delivery of septic tank effluent
Biozone impacts hydrologic properties and the transport and discharge of pollutants to receiving watersheds
Biozone is conceptualized as soil layer in a HRU for configuration in SWAT
Biozone Algorithm

- Adapted from Siegrist et al. (2005)
- Basin scale, continuous simulation model
- Validated at watershed scale
- Currently used in US EPA’s WARMF model
- Simulates system’s aging effect by estimating the amount of live bacteria biomass and plaque
- Estimates fate of nutrients, BOD, and Fecal Coliform in the biozone layer
Mass balance for live bacteria biomass

\[
\frac{d(M_{bio})}{dt} = \alpha \left[Q_{STE} BOD_{STE} - Q_{perc} BOD_{bz} \right] - R_{resp} - R_{mort} - R_{slough}
\]

- \(M_{bio} \) = Live bacteria biomass in biozone, kg/ha
- \(BOD_{STE} \) = BOD concentration in STE, mg/L
- \(BOD_{bz} \) = BOD concentration in biozone, mg/L
- \(Q_{STE} \) = Flow rate of STE, m\(^3\)/day
- \(Q_{perc} \) = Percolation to subsoil layer, m\(^3\)/day
- \(\alpha \) = Biomass/BOD conversion factor
- \(R_{resp}, R_{mort}, R_{slough} \) = Respiration, mortality, sloughing rate, kg/ha
First order kinetics for domestic pollutants

\[
\ln \left(\frac{C_{i,f}}{C_{i,0}}\right) = -\frac{K_i \cdot M_{bio}}{\theta_s \cdot Z \cdot A} \cdot \Delta t
\]

- \(i \) = pollutant \((\text{NH}_4^+, \text{NO}_3^-, \text{BOD}, \text{F.Coli})\)
- \(C_{i,f} \) = Final concentration of pollutant \(i \) in biozone
- \(C_{i,0} \) = Initial concentration of pollutant \(i \) in biozone
- \(K_i \) = First order reaction rate for pollutant \(i \), 1/day
- \(M_{bio} \) = Live bacteria biomass in biozone
- \(\theta_s \) = Saturated moisture content
- \(Z \) = Thickness of biozone layer
- \(A \) = Biozone area
Linear isotherm for Phosphorus sorption

\[S = K_D \cdot C_p \quad (S \leq S_{\text{max}}) \]

- \(S \) = Potential amount of P sorbed per unit weight of soil (mg/kg)
- \(K_D \) = Linear distribution coefficient (L/kg)
- \(C_p \) = Concentration of P in solution (mg/L)
- \(S_{\text{max}} \) = Maximum sorption capacity (mg/Kg)

McCray et al. (2005)
P sorption isotherm assumes zero effluent P concentration if soil is not fully saturated with P

Effluent P concentration at equilibrium is estimated by linear equations developed by Bond et al. (2006)

Water-soluble P as a function of Mehlich-3 P for native Autryville loamy sand, Wasda muck, Georgeville silt loam, and Pacolet sandy clay loam soils (Bond et al., 2006)
Begin Biozone

Active System?

Yes

Update biozone layer
- Saturated water content
- Field capacity
- Live biomass
- Bacterial biomass
 - respiration, mortality,
 - slough-off rate
- Plaque
- Nitrification
- Denitrification
- Phosphorus adsorption
- BOD decay
- Fecal Coliform

Link to surface and sub-surface flow routines for HRU

Exit Biozone

No

Simulate surface ponding of STE by saturating upper soil layers

Is this the first day with surface ponding?

No

Yes

Is the failing system fixed?

No

Yes

Count failure days

Reinitialize parameters
- Saturated water content
- Field capacity
- Nitrogen
- Phosphorus
- Biomass

Yes

No
Water quality database for OWSs

Database includes 26 types of OWSs and 2 generic type systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Q</th>
<th>BOD</th>
<th>TSS</th>
<th>TN</th>
<th>NH4</th>
<th>NO3</th>
<th>NO2</th>
<th>OrgN</th>
<th>TP</th>
<th>PO4</th>
<th>OrgP</th>
<th>F.Coli</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GCON</td>
<td>0.227</td>
<td>170</td>
<td>75</td>
<td>65</td>
<td>54.8</td>
<td>0.2</td>
<td>0</td>
<td>10</td>
<td>10</td>
<td>9</td>
<td>1</td>
<td>10000000</td>
<td>Generic type conventional system</td>
</tr>
<tr>
<td>GADV</td>
<td>0.227</td>
<td>22</td>
<td>14</td>
<td>31.5</td>
<td>18.9</td>
<td>9.6</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>5.1</td>
<td>0.9</td>
<td>543</td>
<td>Generic type advanced system</td>
</tr>
<tr>
<td>COND</td>
<td>0.227</td>
<td>170</td>
<td>75</td>
<td>60</td>
<td>58</td>
<td>0.2</td>
<td>0</td>
<td>14</td>
<td>10</td>
<td>9</td>
<td>1</td>
<td>10000000</td>
<td>Conventional Drainfield</td>
</tr>
<tr>
<td>SAS1</td>
<td>0.227</td>
<td>170</td>
<td>75</td>
<td>70</td>
<td>60</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>10</td>
<td>8.5</td>
<td>1.5</td>
<td>10000000</td>
<td>Septic w/SAS</td>
</tr>
<tr>
<td>SAS2</td>
<td>0.227</td>
<td>170</td>
<td>75</td>
<td>70</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>9</td>
<td>1</td>
<td>10000000</td>
<td>Septic w/SAS</td>
</tr>
<tr>
<td>SAS3</td>
<td>0.227</td>
<td>170</td>
<td>80</td>
<td>20</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>8.5</td>
<td>1.5</td>
<td>1000000</td>
<td>Septic w/in-tank N removal and SAS</td>
<td></td>
</tr>
<tr>
<td>SAS4</td>
<td>0.227</td>
<td>100</td>
<td>65</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>8.5</td>
<td>1.5</td>
<td>10000000</td>
<td>Septic tank w/effluent N removal and recycle</td>
</tr>
<tr>
<td>SAS5</td>
<td>0.227</td>
<td>20</td>
<td>10</td>
<td>7.7</td>
<td>7.4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Septic w/corrugated plastic trickling filter</td>
</tr>
<tr>
<td>SAS6</td>
<td>0.227</td>
<td>18</td>
<td>17</td>
<td>11</td>
<td>4.1</td>
<td>1.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Septic w/open-cell form trickling filter</td>
</tr>
<tr>
<td>SPF1</td>
<td>0.227</td>
<td>3.5</td>
<td>2</td>
<td>38</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>360</td>
<td>Single pass sand filter</td>
</tr>
<tr>
<td>SPF2</td>
<td>0.227</td>
<td>3.2</td>
<td>9</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>407</td>
<td>Single pass sand filter</td>
</tr>
<tr>
<td>SPF3</td>
<td>0.227</td>
<td>4</td>
<td>17</td>
<td>37.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>14.1</td>
<td>12</td>
<td>2.1</td>
<td>862</td>
<td>Single pass sand filter</td>
</tr>
<tr>
<td>SPF4</td>
<td>0.227</td>
<td>75.1</td>
<td>29.1</td>
<td>15.5</td>
<td>10.6</td>
<td>0.3</td>
<td>0</td>
<td>4.6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Single pass sand filter</td>
</tr>
<tr>
<td>RCF1</td>
<td>0.227</td>
<td>3.5</td>
<td>3.5</td>
<td>13.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2920</td>
<td>At grade recirculating sand filter</td>
</tr>
</tbody>
</table>

*13 other types not shown here
Septic variables are defined in *.sep files

```plaintext
Septic HRU data file: 000020006.sep

1 !isep_typ: septic system type
1 !isep_opt: 1=active, 0=failing
2.5 !isep_cap: number of permanent residents in the house
60 !isep_tfail: time until failing system gets fixed, days
500 !bz_z: Depth of biozone layer, mm
50 !bz_thk: Thickness of biozone layer, mm
1000 !bio_bo: Density of biomass, kg/m³
0.5 !coeff_bod_dc: BOD decay rate coefficient, m³/d
0.32 !coeff_bod_conv: Gram of bacterial growth/gram of BOD
30 !coeff_fc1: Field capacity coefficient 1, unitless
0.8 !coeff_fc2: Field capacity coefficient 2, unitless
1.3 !coeff_fecal: F. coli bacteria decay rate coefficient, m³/d
0.1 !coeff_plq: Conversion factor for plaque from TDS
0.5 !coeff_mrt: Mortality rate coefficient, m³/d
0.156 !coeff_rsp: Respiration rate coefficient, m³/d
0.31 !coeff_slg1: Sloughing coefficient 1, kg/m
0.5 !coeff_slq2: Sloughing coefficient 2
149.320 !coeff_nitr: Nitrification rate coefficient, m³/d
42.040 !coeff_denitr: Denitrification rate coefficient, m³/d
128 !coeff_ldistrib: Linear P sorption distribution coefficient, L/kg
850 !coeff_psor: Maximum P sorption capacity, mg P/kg Soil
0.056 !coeff_solps1: slope in the effluent soluble P equation
2.304 !coeff_solpintc: intercept in the effluent soluble P equation
```
The Hood’s Creek watershed has 227 housing units with active OWSs in operation over the area of 172 ha.

No point sources and very small area of crop land in terms of nutrient sources other than OWSs.

Field data from several locations of OWSs is available thanks to NCSU.

GIS map layers:
- 1meter resolution LIDAR
- 1:24000 hydrograph map
- SSURGO 2.0
- 1:24000 land use map
Field data

<table>
<thead>
<tr>
<th>Site (#)</th>
<th>Septic System Type</th>
<th>Number of Bedrooms</th>
<th>Number of Occupants</th>
<th>Slope (%)</th>
<th>Age (^1) (years)</th>
<th>QSTE (Liters/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Conventional</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>13</td>
<td>930</td>
</tr>
<tr>
<td>2</td>
<td>Conventional</td>
<td>3</td>
<td>6</td>
<td>3</td>
<td>13</td>
<td>1385</td>
</tr>
<tr>
<td>3-1</td>
<td>Conventional</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>11</td>
<td>590</td>
</tr>
<tr>
<td>3-2</td>
<td>Conventional</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>10</td>
<td>545</td>
</tr>
<tr>
<td>3-3</td>
<td>Advanced</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>798</td>
</tr>
</tbody>
</table>

\(^1\) Age of septic system at year 2000 since installed

- Field data was collected from monitoring wells around and near drainfields for 1 year period by NCSU
- Groundwater level, nutrients including nitrate and phosphate, pH, and metal concentration
- 10-20 samples collected during the study period
Groundwater height was calibrated instead of stream flow as the biozone processes are more related to subsurface flow.

Predicted 7-day average GW height was calibrated to observation for 1 year period.

Due to the insufficient number of observed data, calibration was conducted based on visual inspection.
Service life span of OWSs typically ranges from 11 years to longer than 30 years.

No direct field data is available for calibration.

52 septic HRUs were tested for 50 years with different scenarios with a Monte Carlo simulation.

Biozone parameters were calibrated such that the failure occurs within the recommended range (75% fails less than 35 years).
Site 1 conventional system
7-day average prediction was calibrated to the mean observation
Validation – nitrate, phosphate

(Site 2 Nitrate)

(Site 2 Phosphate)

(Site 3-3 Nitrate)

(Site 3-3 Phosphate)
Effects on receiving waters due to the combined effect of all point and nonpoint source loads, including different types of septic tank systems

Strength of the SWAT model is increased with the addition of the biozone algorithm

Total Daily Maximum Loads (TMDL) analysis and cost/benefit analyses of onsite-systems versus centralized treatment systems.
Characteristics of septic tank effluent

Conventional system

<table>
<thead>
<tr>
<th>Pollutants/Rate</th>
<th>Unit</th>
<th>Median</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Septic Tank Flow Rate</td>
<td>m³/person/day</td>
<td>0.227</td>
<td></td>
</tr>
<tr>
<td>BOD</td>
<td>mg/L</td>
<td>170</td>
<td></td>
</tr>
<tr>
<td>TSS</td>
<td>mg/L</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>TN</td>
<td>mg/L</td>
<td>60</td>
<td>12~453</td>
</tr>
<tr>
<td>Ammonium</td>
<td>mg-N/L</td>
<td>58</td>
<td>17~78</td>
</tr>
<tr>
<td>Nitrate</td>
<td>mg-N/L</td>
<td>0.2</td>
<td>0~1.94</td>
</tr>
<tr>
<td>Nitrite</td>
<td>mg-N/L</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Organic N</td>
<td>mg-N/L</td>
<td>14</td>
<td>9.4~15</td>
</tr>
<tr>
<td>TP</td>
<td>mg-P/L</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Phosphate</td>
<td>mg-P/L</td>
<td>9</td>
<td>1.2~21.8</td>
</tr>
<tr>
<td>Organic P</td>
<td>mg-P/L</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Fecal Coliform</td>
<td>cfu/100mL</td>
<td>1.0 E7</td>
<td></td>
</tr>
</tbody>
</table>
Nutrient transformation processes

(Picture from Heatwole and McCray, 2007)
Individual OWSs must be defined in land use map
LU type for OWSs: SEPT
Each SEPT grid cell has ~ 10m x 10m area

(Land use map overlaid with OSTs shape file) (Final land use map with “SEPT”)
Assumptions/Limitations

Assumptions
- Typical thickness of the biozone layer is 2-5cm
- A continuous daily STE inflow occurs.
- No intermittent dosing of STE is allowed
- Zero STE if soil temperature gets below freezing point

Limitations
- Not all the septic pollutants are routed through soil profile and lateral flow/groundwater flow
- Requires (x,y) coordinates of onsite septic systems and a pre-processing of the land use map layer
- Hydraulic failure is the only cause of system failure