An Alternative Approach for Analyzing Wetlands in SWAT for the Boone River Watershed in North Central Iowa

Philip W. Gassman, Silvia Secchi, Manoj K. Jha, and Todd Campbell
Center for Agricultural and Rural Development (CARD)
Iowa State University, Ames, IA
Overview

1) Iowa Agricultural Production and water quality issues

2) Description of Boone River Watershed

3) Simulation framework, input assumptions, & current baseline results

4) Wetland scenario description/intial findings - “alternative” refers to delineation scheme
2002 Iowa Landuse Map

- **Com**
- **Soybeans**
- **Alfalfa, pasture, and other grassland**
- **Forest**
- **Urban**
- **Water and wetland**
20% of the N load to the Gulf of Mexico
Boone River Watershed

• ~237,000 ha in parts of six counties

• Des Moines Lobe; part of central North American Prairie Pothole region

• Mulch tillage widely used; very few structural conservation practices

• Dominated by crop production; ~85% in corn-soybean rotation
2005 Land Use Determined from Field-level Survey
Locations of Hydric (Wet) Soils in Iowa
Distribution of Tillage in the Boone River Watershed Determined from Field-Level Survey
CAFOs

<table>
<thead>
<tr>
<th>Type</th>
<th>Total operations</th>
<th>Total head</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swine</td>
<td>109</td>
<td>481,448</td>
</tr>
<tr>
<td>Cattle</td>
<td>13</td>
<td>4,265</td>
</tr>
<tr>
<td>Layers</td>
<td>6</td>
<td>6,962,112</td>
</tr>
</tbody>
</table>

Source: 2005 IDNR CAFO data
SWAT2005: several improvements including enhanced tile drainage routine
 – Du et al., 2005; Green et al., 2006 (Trans. ASABE)

- AVSWATX: ArcView SWAT interface
 - supports SWAT2005
 - SSURGO soils
 - other enhancements

- ArcSWAT: ArcGIS SWAT interface
SWAT Hydrologic Calibration

- 34-year simulation: 1971-2004
 - calibration: 1989-2003
 - validation: 1974-1988

- Calibration steps:
 - curve numbers reduced by 8 (e.g., 78→70)
 - all cropland assumed tiled
 - Hargreaves ET option
 - other parameter adjustments (minor effects)
34-Year Hydrologic Balance

<table>
<thead>
<tr>
<th>Component</th>
<th>Depth (mm)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precipitation</td>
<td>793.7</td>
<td>average annual precip.</td>
</tr>
<tr>
<td>Snowmelt</td>
<td>94.1</td>
<td></td>
</tr>
<tr>
<td>Surface runoff</td>
<td>122.6</td>
<td>~50% of water yield</td>
</tr>
<tr>
<td>Tile flow</td>
<td>114.6</td>
<td>Baseflow (tile, groundwater, & lateral): ~50% of water yield</td>
</tr>
<tr>
<td>Groundwater & lateral subsurf. Q</td>
<td>9.2</td>
<td></td>
</tr>
<tr>
<td>ET</td>
<td>544.3</td>
<td>~69% of precipitation</td>
</tr>
<tr>
<td>Stream flow</td>
<td>246.4</td>
<td>total flow (watershed outlet)</td>
</tr>
</tbody>
</table>
Nitrogen Inputs

• N fertilizer rates: Primarily based on ISA data
 - corn after soybean:
 - spring: 172 kg/ha (100)
 - fall: 183 kg/ha (21)
 - corn after corn: 196 kg/ha

• Manure assumptions less straightforward
 - 80% applied on corn & 20% on soybean
 - N rate: ~210 kg/ha
 - simulation 1: 50% of manured corn also fertilized
 - simulation 2: no additional fertilizer
SWAT Nitrogen Calibration

• 5-year comparison: 2000-2004
 - ~80% of measured nitrogen is nitrate

• Loads estimated with USGS LOADEST program
 - f(monthly grab samples and streamflow)

• Calibration steps:
 - N percolation coefficient: .2
 - adjusted four in-stream kinetic parameters
Initial Nitrate Load Comparisons at Outlet

Nitrate (million kg)
Effects of Tile Drainage on Soil Water

Iowa Conservation Reserve Enhancement Program

Nitrate Removal Wetlands

Source: Iowa Department of Agriculture and Land Stewardship, Division of Soil Conservation, Des Moines, Iowa; http://www.agriculture.state.ia.us/CREP.htm
SWAT Wetland Limitations

• Only one wetland at subwatershed outlet can be simulated
 - Identify % of subwatershed that drains to the wetland

• Proxy approach must be used for 30 subwatershed configuration

• Nutrient transformations are limited to nutrient removal by settling
 - e.g., no transformation between nitrogen pools
Constructed Wetland Scenario

• Iowa Conservation Reserve Enhancement Project (CREP)
 - 36 north central counties (Des Moines Lobe)

• CREP wetland criteria:
 - intercept tile drain flows and pollutants
 - wetlands: 0.5 to 2.0% of drainage area
 - drainage area > 500 acres
 - quasi-criteria: x% identified as hydric soils
 - 60% used for example shown here
Alternative approach: 405 subwatersheds

Suitable subwatersheds (meet all 3 criteria) highlighted in blue

More realistic approach than assuming large aggregated single wetland at outlet of larger subwatersheds
Subwatershed/HRU Comparison

<table>
<thead>
<tr>
<th>Subbasins</th>
<th>Total HRUs</th>
<th>Cropland HRUs</th>
<th>Total Area (km²)</th>
<th>Cropland Area (km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>2212</td>
<td>2122</td>
<td>2338</td>
<td>2161</td>
</tr>
<tr>
<td>405</td>
<td>6147</td>
<td>5224</td>
<td>2338</td>
<td>2162</td>
</tr>
</tbody>
</table>
Initial Wetland Results

• 405 subwatershed approach needs to be reconstructed
 - distortions apparently occurring due to some very small subwatersheds

• Baseline based on “Simulation 1”
 - ~50% long-term nitrate reduction predicted using 30 subwatershed wetland approach
Conclusions

• Need to improve baseline nitrate simulation
• Test model with sediment and P data
• Reconstruct alternative wetland delineation
 - need some measured data
• Ultimately, refinements to SWAT wetland module
 will be needed
Estimated Manure Application Zones (112 kg/ha N rate)

Data generated by C. Wolter, Geological Survey, Iowa Dept. of Natural Resources, Iowa City, Iowa; Software developed by D. James, USDA National Soil Tilth Lab., Ames, Iowa