APPLICATION OF SWAT MODEL ON THREE WATERSHEDS WITHIN THE VENICE LAGOON WATERSHED (ITALY): SOURCE APPORTIONMENT AND SCENARIO ANALYSIS

* DIIAR - Environmental Engineering Department, Technical University of Milan
** Department of Crop Science (Di ProVe), University of Milan
*** ARPAV (Regional Agency for Environmental Prevention and Protection in Veneto), Osservatorio Regionale Acque Interne
Aims of the study

APPLICATION OF SWAT MODEL TO THREE BASINS OF THE VENICE LAGOON WATERSHED TO

• Assess the apportionment of point and non point sources

• Quantify the non point sources in terms of rain-driven and not-rain-driven diffuse sources

• Simulate a scenario analysis to assess the effect of a reduction of agricultural loads
Study area

- **Naviglio Brenta**
 - Bondante Watershed
 - 307 km²
- **Dese Zero Watershed**
 - 290 km²
- **Vela Watershed**
 - 101 km²
- **Venice Lagoon Watershed**
 - 2038 km²

About 35% of the VLW area

- ~ 5,000 t N y⁻¹
- 3,000 t N y⁻¹
Groundwater recharge area is very complex with a network of drainage/irrigation channels. The watershed characteristics include:

<table>
<thead>
<tr>
<th></th>
<th>NBB</th>
<th>DZ</th>
<th>VL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban Area</td>
<td>24%</td>
<td>26%</td>
<td>13%</td>
</tr>
<tr>
<td>Agricultural Area</td>
<td>69%</td>
<td>72%</td>
<td>86%</td>
</tr>
<tr>
<td>Dominant crops</td>
<td>Corn, soy, wheat, sugar beet</td>
<td>Corn, soy, wheat, sugar beet</td>
<td>Corn, soy, wheat, sugar beet</td>
</tr>
</tbody>
</table>

Contributions from external basins are also significant.
Measures available

- WWTP discharge
- Industrial discharge
Sources apportionment

DRY WEATHER LOADS

- Point loads
 - WWTPs discharge
 - Industrial discharge
 - Direct sewer discharge

- Diffuse loads
 - Groundwater recharge
 - Channel network

WET WEATHER LOADS

- Diffuse loads
 - Surface runoff loads

Direct discharge/instream measurements:
- BOD/nitrogen mass balance

BASINS-SWAT loads from WWTPs/Industries and from channel network
loads from direct sewer discharge and from groundwater recharge.
BASINS-SWAT input

10 stations - 13 years daily meteorological data
SWAT calibration

Groundwater flow (m³/s)

Groundwater estimates
Groundwater simulated

GW from external watersheds

Additional inlet contribution

Parameter calibration

- BLAI (corn, wheat)
- HVSTI (corn, wheat)

- CN
- OV_N

- USLE_P
- EORGN
- EORGP
- NPERCO
- FRT_LY1
SWAT model: hydrological calibration

DDE station

Nash Sutcliffe coefficient of efficiency

\[E \approx 0.4 \]

Daily flowrate - DDE station

- Measured
- Predicted

Flowrate (m\(^3\) s\(^{-1}\))
SWAT model: RESULTS

kg N during rainstorm events

Error rainstorm event
± 15%

Flowrate (m³ s⁻¹)

Daily event
Rainstorm event
SWAT model: RESULTS – mean of 10 years simulation

Total N annual load = 2200 t N y⁻¹

Total P annual load = 140 t P y⁻¹

Present State - Ntot

- WWTP and industrial discharge: 34%
- Tributary channels or irrigation systems: 6%
- Atmospheric deposition runoff: 6%
- Urban runoff: 3%
- Direct sewer discharge: 8%
- Groundwater recharge: 5%
- Atmospheric deposition runoff: 3%
- Agricultural runoff: 13%

Present State - Ptot

- WWTP and industrial discharge: 35%
- Tributary channels or irrigation systems: 24%
- Atmospheric deposition runoff: 9%
- Urban runoff: 13%
- Direct sewer discharge: 19%
- Groundwater recharge: 15%
- Atmospheric deposition runoff: 5%
- Agricultural runoff: 65% dry weather diffuse loads

20% runoff loads
15% point loads
65% dry weather diffuse loads
Implementation of an agricultural scenario

<table>
<thead>
<tr>
<th></th>
<th>kg N ha⁻¹ y⁻¹</th>
<th>kg P ha⁻¹ y⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn</td>
<td>-37%</td>
<td>-17%</td>
</tr>
<tr>
<td>Corn + manure</td>
<td>-53%</td>
<td>-27%</td>
</tr>
</tbody>
</table>

Agricultural nitrogen runoff load

- Present state: AN = 139 tN y⁻¹ (~50% agricultural nitrogen runoff load)
- Agricultural scenario: AN = 7 tP y⁻¹ (~15% phosphorus runoff load)
Loads at the basin closure

Nitrogen load at the basin closure

- **Present state**
- **Agricultural scenario**

\[\Delta N = 139 \text{ tN y}^{-1} \] (-6%)

Phosphorus load at the basin closure

- **Present state**
- **Agricultural scenario**

\[\Delta P = 7 \text{ tP y}^{-1} \] (-5%)
Conclusions

• The application of SWAT model allowed to quantify the total annual nutrient load and to assess the source apportionment

• The dry weather diffuse sources (i.e. groundwater/spring recharge and tributary/irrigation channels coming from bordering watersheds) constitute the most important source (65% N and 35% P);

• Runoff loads cover about 20% of the total N load and about 30% of the total P load. Agricultural runoff constitute about 2/3 of the runoff load;

• Better-business agricultural scenario: reduction in agricultural runoff loads of about 50% for N and of about 15% for P → decrease in the total annual load of about 5-6%.

• Most significant model outputs → implemented in a decision support system software (mDSS)