Problems (and Solutions) in Applying SWAT in the Upper Midwest USA

James E. Almendinger
St. Croix Watershed Research Station,
Science Museum of Minnesota, USA

Marylee S. Murphy
Dept. of Geology and Geophysics,
Univ. of Minnesota, USA

And members of
SMAUG: SWAT Midwest America Users Group

Funding for this project was provided by the Minnesota Environment and Natural Resources Trust Fund as recommended by the Legislative Commission on Minnesota Resources.
SWAT problems and solutions:

- **Background**
 - Environmental issues in Upper Midwest USA
 - Study site: Willow River
 - Calibrated SWAT model

- **SWAT problems, and solutions**
 - Persistent alfalfa
 - Loss of infiltrated water
 - Extraneous phosphorus loads
 - Excessive denitrification
 - Large sediment yields
 - Alternate calibrations

- **Summary & Conclusions**
Upper Midwest USA has intensive row-crop agriculture
Corn typifies row-crop agriculture

Zea mays L.
Soybeans often grown the next year

Glycine max L.
Alfalfa is grown for dairy cattle

Perennial crop, grown continuous for 3-4 years

Medicago sativa L.
Corn & soybean production with conventional tillage can cause excessive loads of:

- Sediment
- Nitrogen
- Phosphorus
SWAT is useful for evaluating these nonpoint-source pollution problems

- What factors are most responsible for the problem?
- What can be done to fix the problem?
Background

- Willow River
 - in western Wisconsin
 - sediment & phosphorus problems
 - tributary to St. Croix River, a federally protected river
Background

- **Land use**
 - 40% agriculture
 - corn, soybeans, and alfalfa
 - dairy farming common

- **Reservoirs**
 - Upper
 - Lower

Cropland
(corn, soybeans, and alfalfa)
Representative crop rotations:

C2A3:
- YEAR 1: CORN
- YEAR 2: CORN
- YEAR 3: ALFALFA
- YEAR 4: ALFALFA
- YEAR 5: ALFALFA
- YEAR 6: ALFALFA
- YEAR 7: CORN

C3S1A3:
- YEAR 1: CORN
- YEAR 2: CORN
- YEAR 3: SOYBEANS
- YEAR 4: CORN
- YEAR 5: ALFALFA
- YEAR 6: ALFALFA
- YEAR 7: ALFALFA

C1S1:
- YEAR 1: CORN
- YEAR 2: SOYBEANS
Hydrologic Response Units (HRUs)
-- All parcels with the same vegetation & soils are lumped (aggregated) within each subbasin into a single homogeneous HRU
-- Each HRU has distinct rainfall-runoff response
Background -- Model calibration philosophy

- **Make the model realistic:** Check reasonable loads of water, sediment, and phosphorus for each of the arrows (transport pathways) – even though we really had hard data from the outlet, for only 1 year.

- **Make the model internally consistent:** Check mass balance: outputs from uplands must equal inputs to channels; outputs from channels must equal inputs to reservoirs; outputs from lower reservoir must equal measured loads.
Background – Model calibration

Hydrology Calibration

Daily Mean Flow (m3 s$^{-1}$)

Water Year 1999

- Data
- SWAT

Nash-Sutcliffe CoE = 0.70
Background – Model calibration

Sediment load at outlet

- Nash-Sutcliffe CoE = 0.63

Water Year 1999

Suspended Sediment Load (Mg)

Data
SWAT

Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep
Background – Model calibration

Phosphorus loads at outlet

Nash-Sutcliffe CoE = 0.47
Problems & Solutions

- **Background**
 - Environmental issues in Upper Midwest USA
 - Study site: Willow River
 - Calibrated SWAT model

- **SWAT2000 problems, and solutions**
 - (1) Persistent alfalfa
 - (2) Loss of infiltrated water
 - (3) Extraneous phosphorus loads
 - (4) Excessive denitrification
 - (5) Large sediment yields
 - (6) Alternate calibrations

- **Summary & Conclusions**
Problems & Solutions – (1) Persistent alfalfa

- Once planted, alfalfa cannot be killed

C2A3: what we want

![Images of corn and alfalfa]

C2A∞: what the model does

![Images of corn and alfalfa]

- Why is this a problem?
 - Perennial alfalfa gives much lower sediment and phosphorus yields than corn
 - The model greatly underestimates sediment and phosphorus yields
Problems & Solutions – (1) Persistent alfalfa

- How big is the problem?
 - Sediment underpredicted by 75-77%
 - Phosphorus underpredicted by 63-68%

- What is the solution?
 - FORTRAN code modification by Paul Baumgart, UW-Green Bay
Problems & Solutions – (2) Loss of infiltrated water

- Water infiltrating from surface-water bodies (e.g., Ponds) gets trapped and does not recharge groundwater

 pond infiltration → shallow aquifer storage

 recharge → baseflow

- Why is this a problem?
 - Reduces baseflow component
 - Underestimates total water yield from basin
Problems & Solutions – (2) Loss of infiltrated water

- How big is the problem?
 - Can be large problem in Upper Midwest USA because of closed drainages modeled as Ponds

29% of the Willow watershed drains to closed depressions – which we modeled as Ponds in SWAT
Problems & Solutions – (2) Loss of infiltrated water

- When Ponds were added, annual runoff volume dropped 29%
 - Also lost about 30% of sediment and phosphorus yields, as expected
 - But the water should NOT have been trapped

![Effect of routing closed drainages to Ponds](chart.png)
Problems & Solutions – (2) Loss of infiltrated water

- Where did the water go?
 - Trapped in shallow aquifer storage

Infiltrated water accumulating in shallow aquifer storage

<table>
<thead>
<tr>
<th>Year of model run</th>
<th>Shallow Aquifer Storage (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1992</td>
<td>300</td>
</tr>
<tr>
<td>1993</td>
<td>350</td>
</tr>
<tr>
<td>1994</td>
<td>400</td>
</tr>
<tr>
<td>1995</td>
<td>450</td>
</tr>
<tr>
<td>1996</td>
<td>500</td>
</tr>
<tr>
<td>1997</td>
<td>550</td>
</tr>
<tr>
<td>1998</td>
<td>600</td>
</tr>
<tr>
<td>1999</td>
<td>650</td>
</tr>
<tr>
<td>2000</td>
<td>700</td>
</tr>
<tr>
<td>2001</td>
<td>750</td>
</tr>
</tbody>
</table>

Average annual accumulation = 49 mm
Problems & Solutions – (2) Loss of infiltrated water

- What is the solution?
 - Best is to revise the FORTRAN code
 - Work-around is to stop Pond seepage and force slow surficial leakage (set pond $K = 0$ and $NDTARG = 500$ or so)
Problems & Solutions – (3) Extraneous phosphorus from subbasin chlorophyll

- SWAT delivers a chlorophyll load from subbasins to the channel – and then QUAL2E converts that chlorophyll to phosphorus.

Uplands/Fields (HRUs in subbasins)

Delivered to reaches:
- Phosphorus (as ORGP, SEDP, SOLP, and P_GW)
- Chlorophyll (acc. to Cluis et al. 1988)

Channel Reaches

Without QUAL2E:
- Phosphorus output = input
- Chlorophyll output = input

With QUAL2E:
- Phosphorus output > input
- Chlorophyll output < input
Problems & Solutions – (3) Extraneous phosphorus from subbasin chlorophyll

Why is this a problem?
- Adds extraneous (unreal) phosphorus, causing SWAT to overestimate phosphorus loads

Phosphorus
- With QUAL2E on, basin-wide phosphorus loads increased 19%
- Subbasins increased from 3% to 148%

Chlorophyll
- With QUAL2E on, basin-wide chlorophyll loads decreased 98%
- QUAL2E was converting chlorophyll to phosphorus
What is the solution?

- (1) Avoid using QUAL2E within SWAT
- (2) Make fraction of algae that is phosphorus (parameter AI2) negligibly small (0.001, from default of 0.015)
- (3) Revise FORTRAN code to alter or remove algorithm from Cluis et al. 1988
Problems & Solutions – (4) Excessive denitrification

- SWAT2000 denitrified about 75% of nitrogen fertilizer applied to corn
 - Expected denitrification was about 15%

- Why is this a problem?
 - Corn yields underestimated due to false N stress
 - Residue decomposition altered

- What is the solution?
 - Alter FORTRAN code to allow access to denitrification parameters
 - We used code from Paul Baumgart, UW-Green Bay
 - SWAT2005 already has this improvement
Problems & Solutions – (5) Excessive sediment yield & (6) alternate calibrations

Sediment Delivery from Field to Outlet:

Uplands/Fields
(HRUs in subbasins)

(1) Gross field erosion ~OK

Channels
(Reaches and Floodplains)

Here?

(3) So where should we trap this excess sediment??
Important to know, because choice could impact the modeled effectiveness of BMPs

or Here?

(4) We didn’t know the best solution – so we did it both ways…+/-

(2) Reasonable estimate of sediment delivered to reservoirs and outlet –
but this is much smaller than gross erosion rates
Problems & Solutions – (5) Excessive sediment yield & (6) alternate calibrations

Sediment Delivery from Field to Outlet:

- **Uplands/Fields** (HRUs in subbasins)
 - Excess sediment all trapped in the uplands
 - (primarily by reducing USLE P factor from 1.0 to 0.7)
 - Model version (1): “Passive channel”

- **Channels** (Reaches and Floodplains)
 - All channel processes are “turned off” – no deposition or erosion in channel

- **Reservoirs and Outlet**

Here
Problems & Solutions – (5) Excessive sediment yield & (6) alternate calibrations

Sediment Delivery from Field to Outlet:

Uplands/Fields (HRUs in subbasins)

Much more sediment released from uplands than in passive-channel model
(by raising USLE P factor from 0.7 to default 1.0)

Model version (2): “Active channel”

Channels (Reaches and Floodplains)

Channel processes are “turned on”, and the excess sediment delivered from uplands is trapped in channel (with no channel erosion allowed)

Reservoirs and Outlet
Problems & Solutions – (5) Excessive sediment yield & (6) alternate calibrations

- SWAT calibrations can be non-unique
 - Both the “passive channel” and “active channel” versions of the Willow model are valid calibrated models

- Why is this a problem?
 - Because choice of calibration can change conclusions from running model scenarios under different conditions (changed management or climate, for example)

- What is the solution?
 - Run scenarios on a range of calibrated models…
 - Something we all know already:
 - Interpret model results cautiously
Summary

- SWAT2000 had significant problems with
 - (1) persistent alfalfa that could not be killed
 - (2) loss of infiltrated water from Ponds used to simulate closed depressions
 - (3) extraneous phosphorus loads originating as chlorophyll loads from subbasins to the channel

- Other considerations
 - (4) beware of excessive denitrification
 - (5) beware that default sediment yields can be too high
 - (6) beware of implications of alternate calibrations
Conclusions

- No model is better than the weakest link in its chain
- SWAT will continue to improve as bugs are fixed and algorithms are re-examined
- “All models are wrong; some models are useful.”

Kiss me – I’m Dutch!! (from Friesland)
Background

- Corn & soybean production with conventional tillage can cause excessive loads of:

 - Nitrogen
 - Sediment
 - Phosphorus