Cost-effective Allocation of Conservation Practices using Genetic Algorithm with SWAT

Manoj Jha
Sergey Rabotyagov
Philip W. Gassman
Hongli Feng
Todd Campbell

Iowa State University, Ames, Iowa, USA
Raccoon River Watershed

- Covers approximately 9,400 km2 of West Central Iowa
- Surface water from the Raccoon River is for drinking water supply for more than 370,000 residents in Des Moines and in other central Iowa communities
- *Class C* water quality standard applies to the Raccoon River at the intake – USEPA MCL for Nitrate: 10 mg/L
- Nitrate concentration often exceeds MCL (exceeds 24% of the time from 1996-2005)
- Average concentration = 6.45 mg/L (range over 0-18.3)
- Peaked greater than 12 mg/L for 8 of the 10 monitored years
- Exceeded 10 mg/L 24% of the time from 1996-2005
Des Moines Water Works (DMWW) – World’s largest nitrate removal facility (10 millions gal. of water per day)
Raccoon River Watershed

- Non Point agricultural sources are the principal contributor of the elevated nitrate concentration
- Prime agricultural area dominated by corn and soybean production in over 75% of the watershed
- Nitrate is primarily delivered to stream with subsurface flow including baseflow and tile drainage
- Baseflow contribution to nitrate loads are greater than 80% in late fall and spring
SWAT Model

- Physically based and continuous watershed scale hydrology and water quality model
- Operates on a daily time step
- Developed to predict impacts of land management practices on watershed hydrology and water quality
- Extensively used worldwide; over 250 peer reviewed publications
SWAT Model

• In SWAT modeling:
 - a watershed is divided into multiple subwatershed which are further subdivided into lumped units called hydrologic response units (HRUs)
 - hydrology and water quality components are computed at HRU and then the resulting loadings are summed together at subwatershed level which are then routed through main channels and reservoirs to the watershed outlet.
SWAT Model Setup

- Topography: 30m DEM
 USGS Seamless Data Distribution System
 EROS data center
 http://seamless.usgs.gov

- Landuse data: 2002 Landcover
 Iowa DNR GIS Library
 http://www.igsb.uiowa.edu/nrgislibx

- Soil data: SSURGO
 NRCS Soil Data Mart
 http://soildatamart.nrcs.usda.gov

- Climate data: National Weather Service COOP
 Iowa Environmental Mesonet
 http://mesonet.agron.iastate.edu/index.phtml
Watershed Delineation at HUC12 level
Tile Drainage

Classification method for soil require tile drainage:

slope \leq 5\%; drainage class > 40 (poor through very poor); and subsoil groups 1 and 2 (clay < 40\%)

\text{OR}

slope \leq 2\%; drainage class of poor to very poor; and hydrologic group D
SWAT Model Setup

Fertilizer Application

 - Iowa Department of Agricultural and Land Stewardship (IDALS)
 - Iowa Ag Census data

Manure Application

 - Manure from feedlots (cattle manure)
 - Manure from grazing operation (cattle on pasture)
 - Manure from CAFOs

Point Source Data

 - Cattle in Streams
 - Septic discharge (US Census data)
 - WWTP discharge (Iowa DNR)
Summary N Inputs (MT)

- Fertilizer: 57,663
- Manure: 31,528
- Human: 442
- Industry: 83
SWAT Model Setup

- ArcView GIS interface of the SWAT model (AVSWAT) was used for watershed delineation:
 - 108 subwatersheds
 - more than 3,500 HRUs

- SWAT model version 2005 was used in the simulation

Rainfall-runoff : CN method
Evapotranspiration : Penman-Monteith
Channel Routing : Muskingum method
Modeling Results

Hydrologic balance of the watershed

(ave. annual values for 1986-2004)

Precipitation = 840 mm
Snowfall = 94 mm
Surface runoff = 96 mm
Tile flow = 56 mm
Groundwater = 78 mm
Baseflow = 134 mm (58% of streamflow)
Evapotranspiration = 595 mm (71% of precipitation)
Annual Streamflow

$R^2 = 0.94$
$E = 0.93$

$R^2 = 0.80$
$E = 0.76$
Monthly Streamflow

Comparison at Van Meter, IA

- $R^2 = 0.86$
- $E = 0.86$

- $R^2 = 0.88$
- $E = 0.87$
Organic Nitrogen
Ammonia Nitrogen
Mineral Phosphorus
Organic Phosphorus

![Graph showing Organic P (tons) over years with Measured and Simulated data.]
Genetic Algorithm

- Optimal placement of conservation practices is required for cost-effective water quality benefits.

- If, \(N \): conservation practices (CPs) for possible adoption
 \(F \): total number of fields (HRUs) in a watershed

 \[\text{possible combinations} = N^F \]

- Genetic algorithm provides a solution strategy of this sort of problems.

- Genetic algorithm is an evolutionary algorithm, which searches for solutions among an enormous amount of possibilities.
Genetic Algorithm and SWAT

- We integrate modern evolutionary algorithm (SPEA2) with SWAT model to search for a frontier of cost-effective nutrient pollution reduction solutions for a watershed.

 Similar attempts: Srivastava et al. (2002), Veith et al. (2003), Muleta and Nicklow (2005), Lant et al. (2005) and Arabi et al. (2006)

- For each HRU, there are 33 mutually exclusive options:
 - land retirement, and
 - interacting 4 tillage types (CT, RT, MT, NT) with conservation practices (terraces, contouring, grassed waterways) and 20% N fertilizer reduction
Algorithm Flow Diagram

Start: create initial population

Current population

Create temporary population

Run SWAT

Evaluate all individuals’ cost and pollution impacts

Assign fitness levels using SPEA2 criteria

Perform mating selection (fitness-proportional selection)

Create new individuals by crossover

Create new individuals by mutation

Increment generation counter

Pareto-efficient frontier approximation
Raccoon Generation 0000
Population 0050

2-D View

3-D View
Cost and Pollution Outcome

<table>
<thead>
<tr>
<th>Point #</th>
<th>Nitrate Reduction</th>
<th>Phosphorus Reduction</th>
<th>Cost of achieving reductions, M$/year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% from baseline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>638</td>
<td>30.5</td>
<td>53.2</td>
<td>80.1</td>
</tr>
<tr>
<td>1252</td>
<td>3.9</td>
<td>30.2</td>
<td>3.6</td>
</tr>
<tr>
<td>1146</td>
<td>15.4</td>
<td>54.6</td>
<td>22.9</td>
</tr>
</tbody>
</table>
Land allocation for selected scenarios, km2

Reduced Tillage
Land allocation for selected scenarios, km2

Reduced Tillage + Grassed Waterways
Land allocation for selected scenarios, km2
Some Implications

- Algorithm favors:
 - “Grassed Waterways” as a P reduction practice
 - “N fertilizer reductions” for small reduction in nitrate loadings
 - “land retirement” for medium to large reductions in nitrate loadings

- Cost of nitrate control rise dramatically once land retirement has to be utilized
Conclusions

- SWAT modeling framework is set up for the Raccoon River Watershed with detailed land management information.
- Raccoon SWAT setup is calibrated and validated for watershed hydrology, streamflow, and nitrogen and phosphorus constituents.
- Genetic Algorithm is a useful optimization tool in assessing cost-effective allocation of conservation practices for pollution reductions.
- Conservation practices selected by algorithm for 15% nitrate reduction also reduces phosphorus automatically by more than 50% for Raccoon River Watershed.
- GA in combination with SWAT is very useful in providing a frontier of cost-effective allocations of selected conservation practices for improved water quality.
Thank You!
Convert all perennial grasslands to corn-corn

<table>
<thead>
<tr>
<th></th>
<th>Area converted km² (% of wat.)</th>
<th>Nitrate loading (Tons)</th>
<th>% Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>-</td>
<td>23,501</td>
<td>-</td>
</tr>
<tr>
<td>Convert only CRP to corn-corn</td>
<td>192 (2%)</td>
<td>24,313</td>
<td>+ 3.5</td>
</tr>
<tr>
<td>Convert all grasslands (CRP, Alfa, Brom, Pasture) to corn-corn</td>
<td>1682 (18%)</td>
<td>26,265</td>
<td>+ 11.8</td>
</tr>
</tbody>
</table>
Convert row crops to CRP grasslands
Decrease N fertilization rates on corn ground
Remove all point sources

<table>
<thead>
<tr>
<th>Action</th>
<th>Nitrate loading (Tons)</th>
<th>% Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>23,501</td>
<td>-</td>
</tr>
<tr>
<td>Remove all human waste sources (septic and WWTPs)</td>
<td>21,692</td>
<td>- 7.7</td>
</tr>
<tr>
<td>Remove all cattle from the streams</td>
<td>23,489</td>
<td>- 0.1</td>
</tr>
</tbody>
</table>
Change livestock patterns in the watershed

<table>
<thead>
<tr>
<th>Action</th>
<th>Nitrate loading (Tons)</th>
<th>% Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>23,501</td>
<td>-</td>
</tr>
<tr>
<td>Remove all pastured cattle (no grazing)</td>
<td>23,413</td>
<td>- 0.4</td>
</tr>
<tr>
<td>Remove cattle from feedlots</td>
<td>22,944</td>
<td>- 2.4</td>
</tr>
<tr>
<td>Remove CAFOs</td>
<td>18,535</td>
<td>- 21.1</td>
</tr>
<tr>
<td>Remove all livestocks</td>
<td>17,888</td>
<td>- 23.9</td>
</tr>
</tbody>
</table>
Conclusions

• SWAT modeling framework is set up for the Raccoon River Watershed with detailed land management information.

• Raccoon SWAT setup is calibrated and validated for watershed hydrology, streamflow, and nitrogen and phosphorus constituents.

• Converting all grasslands to continuous corn may increase nitrate loadings by 12%.

• Converting all croplands to grasslands may reduce nitrate loadings by more than 80%.

• Point sources pollutants are responsible for around 8% of nitrate loadings.

• Total livestock manure including CAFOs and feedlots are responsible for around 24% of the total nitrate loadings.
Future Direction

- Validate the Raccoon SWAT modeling setup at several locations within the watershed.

- Develop more management scenarios for better understanding of the watershed response to various possible situations including different climatic conditions.

- Develop a Bacteria TMDL – another parameter recognized significantly for the Raccoon River.