SWAT-DEG and Channel Stability Assessment

P.M. Allen, Baylor University J.G. Arnold, USDA/ARS Halff Associates, Inc

July 2005

River Restoration

 \$1 billion a year estimates since 1990
 most common goals: water quality enhancement, manage riparian zones, improve habitat, fish passage, bank stability
 More 1/3 US rivers are listed as impaired or polluted
 From Bernhardt et. al. Science (2005)

Effects Urbanization

Population: 6 million Growth: 140,000 yr (Suburbs rate 20-50%) Single Family: 40,000 yr Multifamily: 10,000yr

Streambank Problems: One Year

Reed and Associates

Lane's Relationship

$Q S \sim Q_s D_{50}$

Questions for Stream Assessment

Is the channel stable given landuse change?
How much will the stream downcut? (Do I need drop structures?)
How fast will it downcut (when need \$\$\$)?
What are stable channel dimensions: W,D,Rc (for repair and setbacks)

Urbanization

Urban Mass Curve

Peak Discharge

When I% is increased 0-40% Q2>35%
When I% increased 0-100% Q2>80%
Peaks 1.2-1.4X undeveloped
Annual Direct runoff 2X undeveloped

Effective Discharge

Flow magnitude that transports greatest amount of sediment over time
Used as preliminary guide for restoration design (Goodwin JHyd Eng. 2004)
Problems: based on flow duration data
Based on suspended or bed material data
Where is the data?

Urbanizing Flow Durations

Sediment Data

Suspended Sediment Pin Oak Creek

Few stations (n=6 Blacklands) and data scattered!

A Moving Target

Physiographic Setting

Province/EcoRegion: Blackland Prairie
 Rock Type: Shales and Limestones
 Soils: silty clays to clays
 Climatic Regime: Semi-Humid Monsoonal

Geology/Soils

Grain Size, PI, Permeability, Hydrologic Group, AWC, Erodibility

Threshold Channels

Threshold Channels

Stream Erosion Zones Alluvial/Threshold Channels Soil Zone

Slake Zone

Rock Zone

Bed Load

Field Survey

Channel Survey by 200 foot Reach
Photographs left/right banks
Active Channel
Bed-bank samples
Pool/riffle and bed/bank processes

Field Survey Form

Example: Field Data Sheet

Channel Evolution Model

Channels Evolve in 4-6 Stages
 Schumm, Harvey, Watson and Later Simon
 Equilibrium only after adjustments in channel slope, width, depth
 Typically proceeds upstream

Phase II: Downcutting

Phase II Knickpoint

Phase III Tree Loss/Widening

Phase III: Widening

Bank Failures: Slump Wedge

Phase IV:Stable

Analysis of Field Data

What do I do with the Field Data?
Harvey Watson and the CEM
Or...whats next?

Watson Harvey Stability

Nh = Equilibrium slope/actual slope
 Ng=Actual Height/Critical Height
 I = Stable
 II= Degrading (Optimal for Grade Control)
 III = Aggrading and Failing Banks

 $\mathbf{V} = \mathbf{Stable}$ minor Aggradation

Downcutting Controls Channel Morphology

How can we quantify Channel Evolution Model?