Predicting diffuse-source transfers of sewage-sludge- associated chemicals to surface waters using SWAT

Narayanan Kannan

(Blackland Research and Extension Centre, Temple, TX, USA)

Sue White

(Cranfield University, Silsoe, UK)

and Mick Whelan

(Unilever PLC, Sharnbrook, UK)

Introduction to surfactants

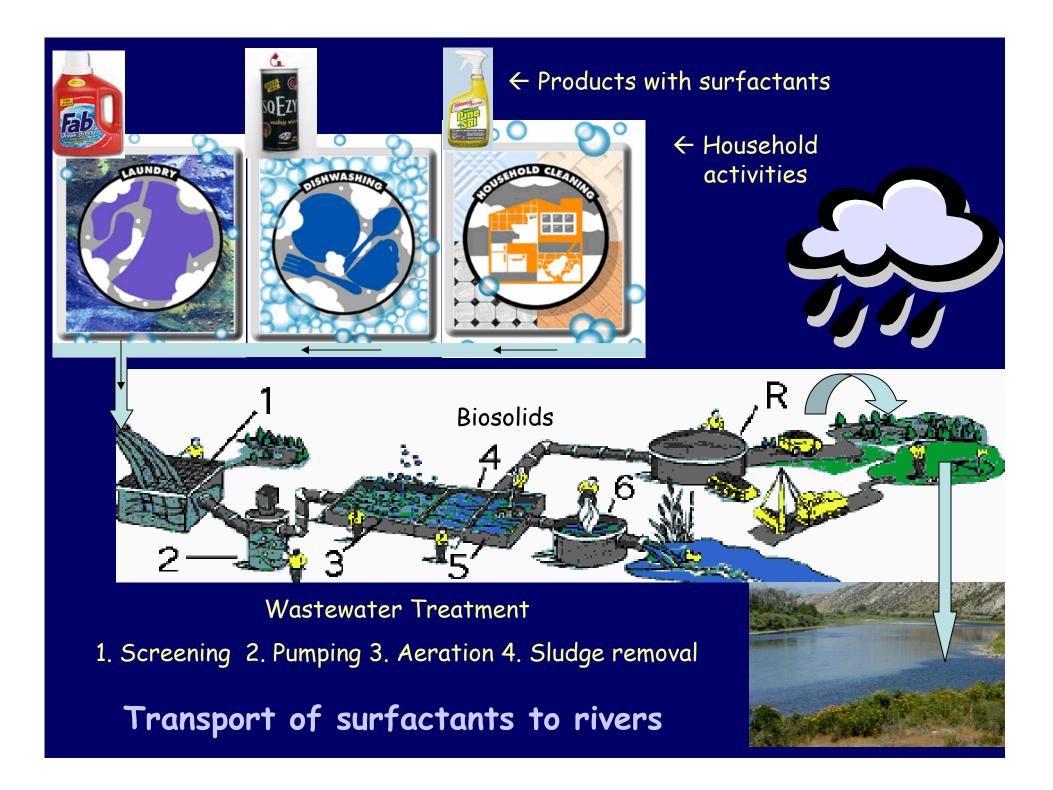
Sewage Sludge : Sulphates, Phosphates, metals , synthetic waste, organic waste, and surfactants

Definition: Surface active agent

Occurrence: Detergents, Dishwashing liquids, All purpose cleaners

Purpose of surfactants : to decrease surface tension and improve the cleaning

action

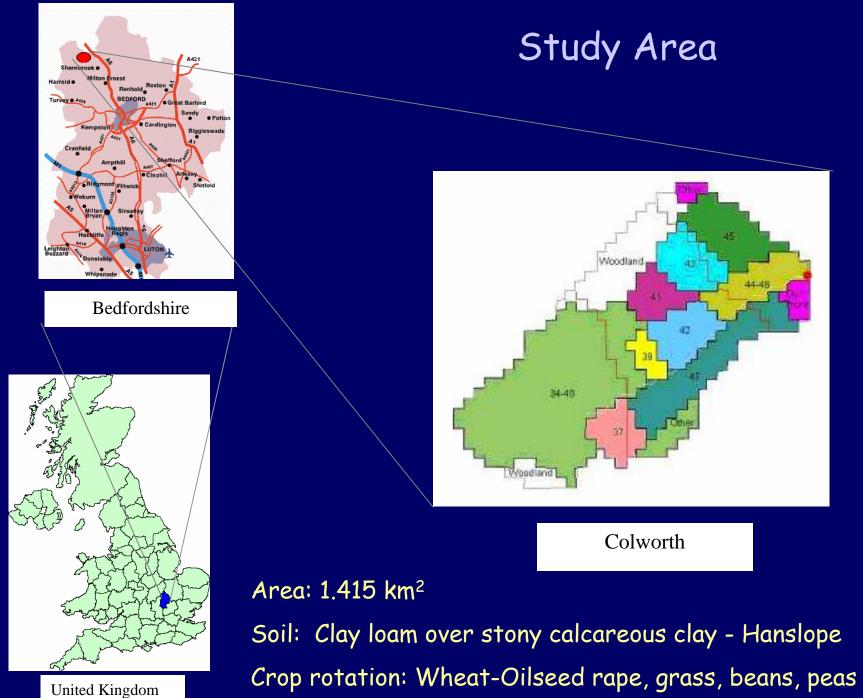

Surfactant also performs

- Cleaning
- emulsifying

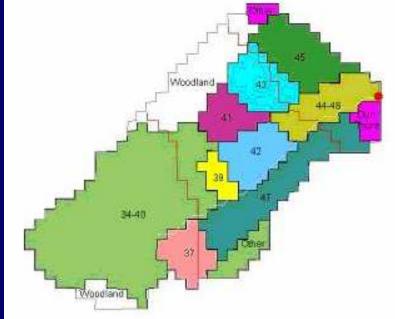
(Courtesy: The soap and detergent association: <u>www.cleaning101.com/cleaning/chemistry</u>)

Types : Anionic / cationic depending on charge

Surfactant Name: Linear Alkylbenzene Sulphonate (LAS)



Why a modelling study is important for this chemical?


•Companies using LAS claim that "Use of LAS in laundry and household cleaning products will not result in water pollution"

-Statements like these are based on extrapolation of existing ecotoxicity data - Need to be verified by observations/modelling studies -No reported modelling study on this chemical so far - Increased use (Europe: 330 kton in year 2000)-Getting more attention recently -Expected to behave similar to pesticides

- Properties easily available

Study Area

Colworth

This study ..

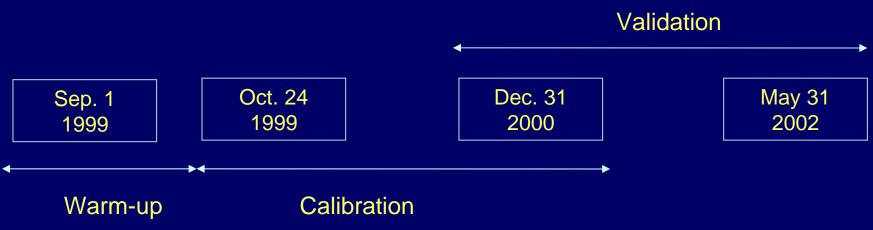
·Based on a previous pesticide modelling study for the same catchment

- Is aimed to answer "what if" scenarios
- Uses real data on a real catchment
- •Hypothetical scenarios
- •Has no observations to compare the model results

Assumptions

1) Winter Wheat is growing throughout the cultivable areas of the catchment

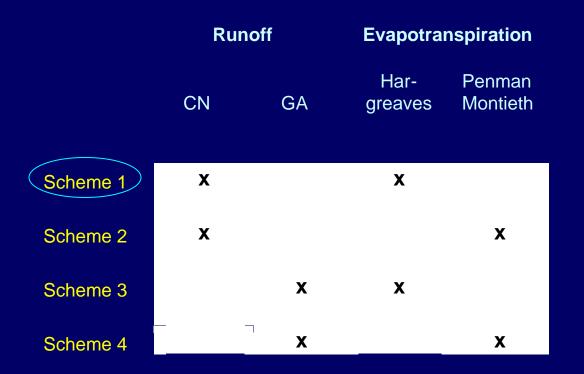
...and throughout simulation period (i.e. Crop growth of Winter Wheat is simulated every year)


2) Same set of management operations (including rates and dates) for every crop growth cycle.

Data Availability and Calendar of Simulation

Simulation period		1999		2000		2001		2002					
		Jan	May	Sep	Jan	May	Sep	Jan	May	Sep	Jan	May	Sep
Data	Source												
					Calib	ration				Valid	ation		
Rainfall	Unilever-C	olworth		1		ſ	r						
Temperature	Unilever-C	olworth											
Wind speed	BADC-Bed	afora I											
Solar radn.	BADC-Bec	dford											
Dew point	BADC-Bea	dford						l					
Management	Unilever-C	olworth											
Streamflow	Unilever-C	olworth											

BADC - British Atmospheric Data Centre


Calibration / Validation

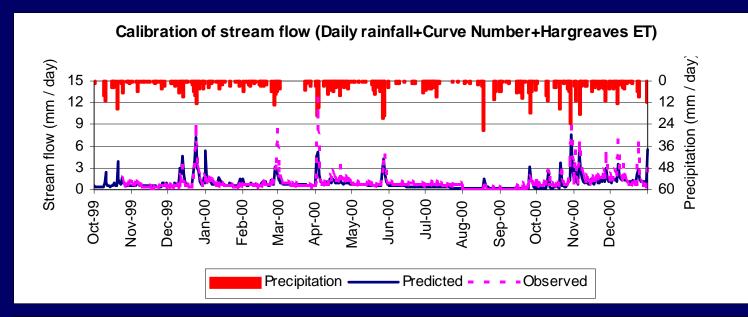
Rainfall pattern in the study area

	Water year					
	1999-2000	2000-2001	2001-2002			
Total yearly rainfall	663.8	755.4	527.2			
·	Average	Wet	Dry			

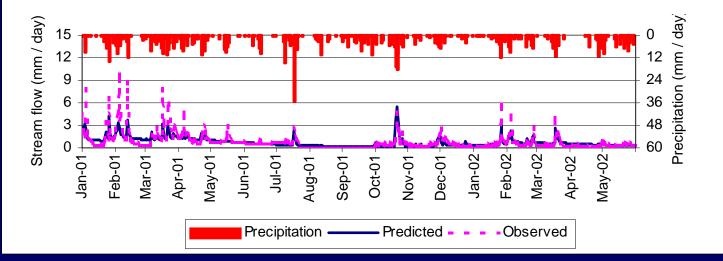
Different Calibration Schemes

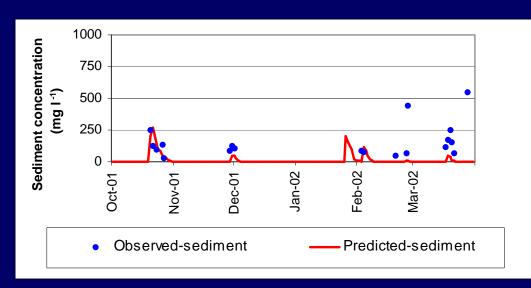
Performance of hydrological modelling

Period	Method	PBIAS	PME	NSE	DRMS
Oct. 1999 to Dec. 2000	Calibration	16.85	56.17	60.12	0.81
Jan. 2001 to May 2002	Validation	3.17	51.15	59.32	0.74


PBIAS - Percent Bias \rightarrow Under / Over estimation

PME - Persistence Model Efficiency → Performance compared to a simple persistence model


NSE – Nash & Sutcliffe Efficiency


DRMS - Daily Root Mean Square estimation criterion ightarrow Standard deviation of model prediction errors

Comparison of predicted and observed stream flow

Validation of stream flow (Daily rainfall + Curve Number + Hargreaves ET)

Comparison of predicted and observed daily sediment concentration values

Check for Processes / components controlling water balance

Prediction from SWAT	Compared to	Remarks
Crop growth	Reported observations	ok
Evapotranspirtaion	30 year average values	ok
Soil moisture deficit	30 year average values	ok
Partitioning of rainfall into	Discussion with soil	
Different runoff components	hydrologist	ok

LAS modelling in SWAT

Representation of bio-solids application in SWAT

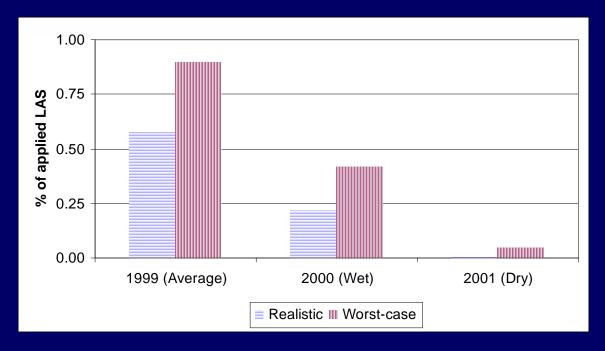
Bio-solids has a nutritional value-varies with wastewater treatment processes

- therefore bio-solids can be added as a manure in SWAT-fertiliser database
 LAS in bio-solids behaves like a pesticide
- therefore bio-solids can be added as a pesticide to SWAT-Pesticide database

Properties of LAS/Bio-solids used in this study

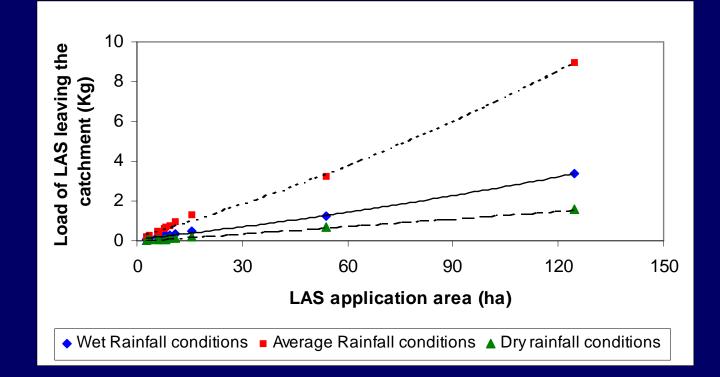
- 3.91 % N and 4.82 % P

(from the nearest wastewater treatment plant to the study area)

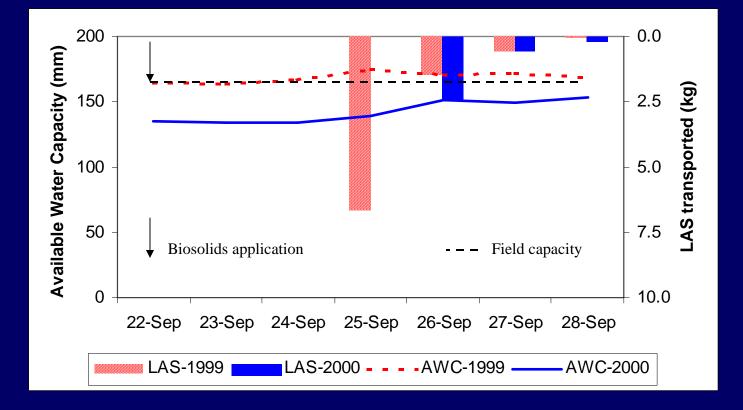

- Decay properties : Varies with scenario

Degradation of LAS Follows first order kinetics

Scenarios in LAS modelling


Scenario	Half life (days)	LAS in bio- solids (g/kg)	Application rate (kg/ha)	% of nutrient demand met	Apply to
Realistic case	7	5	2500	100	All fields together and each field individually
Worst case	30	10	5000	TGD	All fields together and each field individually

Predicted total load of LAS for three hydrologically different cropping seasons



	Rea	listic cas	se	Worst case			
Season	Applied	Load	%	Applied	Load	%	
	(kg)	(kg)	applied	(kg)	(kg)	applied	
1999 Winter	1556.25	8.993	0.58	6225	55.908	0.900	
2000 Winter	1556.25	3.376	0.22	6225	26.113	0.420	
2001 Winter	1556.25	0.085	0.01	6225	3.032	0.050	

Relationship between area of application and predicted load of LAS leaving the catchment for various rainfall conditions-Realistic case

Analysis of soil water at the time of biosolids application

Conclusions

•SWAT can be used to model the transport of LAS

•Although the scenarios examined were hypothetical, the predictions of LAS from SWAT can be reliably used owing to its successful application for pesticide modelling for the same catchment

•Total quantity of bio-solids applied, and soil water content at the time of bio-solids application have biggest control over LAS transport

 Transport of LAS from bio-solids application will not impair water quality

ACKNOWLEDGEMENTS

- 1. Unilever (Mick Whelan) Technical Support
- 2. ADAS (Simon Groves) Collecting data
- 3. British Atmospheric Data Centre Access to weather data

More information on LAS can be found in http://www.heraproject.com/RiskAssessment.cfm