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Outline

• the model SWIM: an overview

• the case study basin

• model development:

- new components and techniques,

- new modules,

- impact assessment: examples

• literature on SWIM and applications
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Land use pattern & land management

SWIM (Soil and Water Integrated Model) scheme

SWIM was 
developed in PIK 
(Potsdam) based
on SWAT-93 and 
MATSALU for
climate and land 
use change
impact studies



Case study area: the Elbe basin

Berlin

Hamburg

City
Arable land
Grassland
Forest
Mining
Wetlands
Water

Basin:

• drainage area 148.268 km²

• long-term mean annual      
precipitation  659 mm

• agriculture areas: 56 %

River:

• total length 1092 km

• long-term mean discharge 
at the mouth   716 m3 s-1

• specific discharge          
6.2 l s -1 km -2 or 29.7 % of 
annual precipitation



SWIM development: new components and 
techniques

• 3-level disaggregation is included explicitely, resulting maps
can be printed for hydrotopes or HRUs (VK),

• preprocessing: climate interpolation using four methods, 
elevation can be considered (FH),

• crop generator (FH, JP),

• validation technique: multi-scale, multi-site, and multi-
criteria (all),

• uncertainty analysis technique (FH).

Important!

The average subbasin
size is essential both for
lowland basins
(accumulation time) and 
for mountainous basins
(climate interpolation).



Thiessen 

Ordinary kriging External drift kriging 

Eff=0 .25

Eff=0 .67Eff= 0.29

Thiessen polygonsInverse distance
Eff= -0.24

Climate Interpolation example:

mean temperature

Climate stations

Important!

Climate interpolation is
especially needed:

1. for precipitation,

2. in mountainous basins,

3. if the number of stations is low.



Crop generator:

examples for the reference and scenario periods

clover / alfalfa
rape
potatoe
sugar beet
silage maize
summer barley
winter barley
winter rye
winter wheat
fellow land

clover / alfalfa
rape
potatoe
sugar beet
silage maize
summer barley
winter barley
winter rye
winter wheat
fellow land

Crop distribution: 
reference
(example)

Crop distribution: 
scenario
(example)

a

Important!

Crop rotations affect both
water and nutrient
dynamics, and therefore
should be adequately
represented.



Validation technique:

examples

3: Upper Saale, 
1013 km2, 
Thüringer 
Wald,
Efficiency: 
0.82

3 Mountains

2: Upper 
Mulde, 
2091 km2, 
Mountains / 
Loess
Efficiency: 
0.77

2 Loess

1: Stepenitz, 
576 km2, 
North. 
Pleistocen
Efficiency:
0.73

1 Lowland
+ large                    
scale

+ g-w

+ crop

+erosion

+ N, P

Important!

First: model understanding and 
experience in manual
calibration,

Then: automatic calibration



Uncertainty analysis

mount.

loess

lowland

Elbe 
basin mount.

loess

lowland

Elbe 
basin

Histograms of N&S efficiency
and % error assuming a 

stochastic choice of 
parameters

Summary:
N&S is better in 
mountainous basins and at 
the large scale; 

% error is lower in 
mountainous basins.

Simulation results in the
loess basins could be
improved by appliying better
soil parametrization.



SWIM development: new modules

•Riparian zone module in SWIM: 

SWIM-rip model version

(Fred Hattermann et al.)

•Carbon module included explicitely in SWIM: 

SWIM-SCN model version

(Joachim Post et al.)



⇒Riparian zone serves as an interface between upland and r iver
network (or: between subbsins and streams),
1) It interacts with groundwater,    
2) lateral fluxes from upland pass through riparian zone

SWIM-rip concept :                                           
Water fluxes at the catchment scale

and the role of riparian zone



Model definition : A riparian zone or wetland is defined as a 
hydrotope with shallow g-w table, where plant roots can reach 
groundwater, and having lateral inflow from upland areas

Three main changes introduced in the model:

A.  implementation of daily groundwater table dynam ics at 
the hydrotope level and soil-groundwater interaction, 

B. implementation of nutrient retention in groundwat er and 
interflow (mainly  through denitrification), 

C. implementation of water and nutrient uptake by pl ants 
from groundwater in riparian zones and wetlands.

SWIM-rip concept :                                           
Water fluxes at the catchment scale

and the role of riparian zone



river nitrate concentration
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The effect of additional N uptake in riparian
zones on N concentrations in the river

N plant uptake
[kg/ha]

Additional 
uptake [kg/ha]

Attention!

More details in     
Fred Hattermann‘s
presentation 14.7



Soil processes
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C/N turnover pools: 

POM, AOM and 
mineral pools

5 POM fractions for each
plant species

first order reaction kinetics, 
depending on soil moisture, 
soil temperature

SWIM-SCN model version: the concept

Important!

The level of complexity of 
the new carbon module is
compatible with those of 
other SWIM modules
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Long term simulation
(1902 – 2002)
Field plots UFZ Bad 
Lauchstädt, Saxony-Anhalt, 
Germany

� silty-loamy soil, high 
fertility
� 4 year crop rotation
� 2 fertilisation regimes

Heterotrophic soil
respiration
Field plots ATB Potsdam, 
Germany

� sandy soil, wheat –
rye rotation
� quick warming and 
cooling of sandy soil in 
spring / autumn causes a 
shift in simulations

SWIM-SCN model version: verification



1400

1500

1600

1700

1800

1900

1951 1955 1959 1963 1967 1971 1975 1979 1983 1987 1991 1995 1999

gC
/t

original grain_maize grain_maize_cov
grain_root grain_root_cov 4grain 2 gras
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� 4 yrs ley – 2 yrs grain: + 2.4 tC/ha 51 yr
� 2 yrs ley – 4 yrs grain: + 1.6 tC/ha 51yr

� grain rotations with cover crops: no trend

� grain rotations without cc: - 2.7 tC/ha 51yr

� grain – root crops: ~ - 5.0 tC/ha 51 yr

Effect of crop rotations on long term soil C dynamics  

Bad Lauchstädt experimental site (1951 – 2002)
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original rotation (all straw exported)
all straw residue remains
minimum value for average straw residues in literature
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Attention!

See poster for
more details: 
Joachim Post et al.

Effect of crop residue management on long term soil C 

dynamics, Bad Lauchstädt experimental site (1951 – 2002)

� incorporate all straw residue:     
�incorporate 1.7 t C/ha 2 yrs (as straw) 

+ 1.3 t C/ha 51 yr

� incorporate 0.7 t C/ha 2 yrs  - 3.1tC/ha 51yr

� original rotation (all straw removed): 
- 4.6 tC/ha 51 yr



SWIM application for impact studies

• Climate change impact assessment (water, 
crop yield, water quality: N)  (VK, FH)

• Land use change impact assessment (water, 
water quality: N & P) (VK, AH)



ClimateClimate changechange impactimpact on on groundwatergroundwater
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ClimateClimate changechange impactimpact on on cropcrop yieldyield

Winter wheat:

Change in %

Winter barley:

Change in %

Silage maize:

Change in %

Average = 
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+ 9 %
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ClimateClimate changechange impactimpact on N on N losseslosses withwith waterwater
fromfrom arablearable landland
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Selected references on SWIM


