
Sensitivity of the SWAT model to the soil and land use data parametrization: a case study in the Thyle catchment, Belgium

A.A. Romanowicz¹, M. Vanclooster¹,

M. Rounsvell² and I. la Leunesse²

Department of Environmental Sciences and Land Use Palanning, UCL
Department of Geography, UCL

Table of contents

- Introduction
- Materials and methods
 - Model used
 - Input data and scenarios
 - Evaluation of the simulation
- Results
- Conclusions

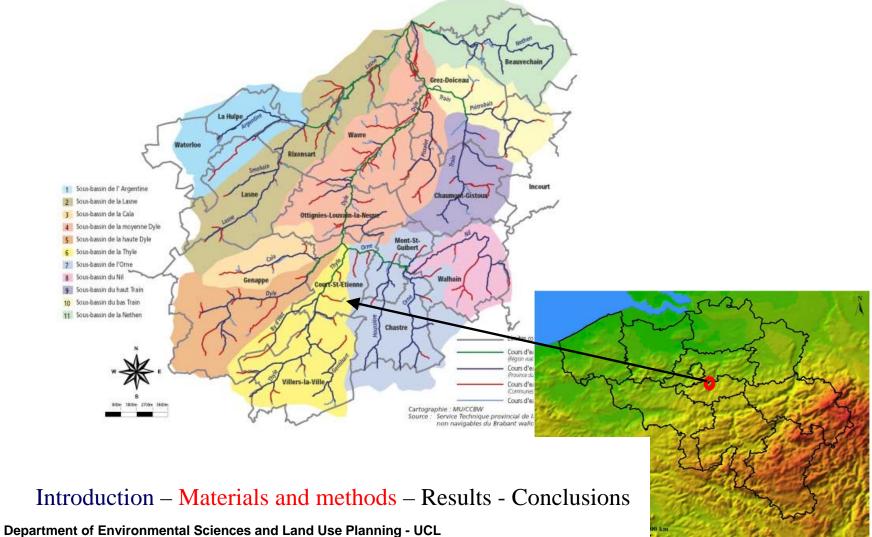
Introduction

- In integrated models different parameters influence the modelled output
- To test the SWAT model to its internal pre-processing scheme performed in the ArcView software

Introduction – Materials and methods – Results - Conclusions

Material and methods: Model Used

- Hydrological model:
- Landscape model:


el: AVSWAT 2000 FRAGSTAT

Introduction – Materials and methods – Results - Conclusions

Studied catchment

Studied catchment

- Size : 59 km^2
- Land use:
 - Agricultural 67%
 - Forest 27%
 - Urban 5.5%
 - Industry 0.5%

Introduction – Materials and methods – Results - Conclusions

Input data

- DEM map
- Mask map
- Land use map
- Soil map
- Weather data
- Soil profiles

Land use map

Land use map created for the Dyle catchment based on:

- SIGEC data set
- Landsat TM
- IGN topographical map 1:50 000

Two types of legend were used (detail and generic)

Soil map

Two maps used:

- Dominant soil map (Belgium Association map 1:500 000)
- Detail soil map (IRSIA map 1:25 000)

Introduction – Materials and methods – Results - Conclusions

Scenarios

- Soil maps:
- Land use maps:
- Catchment size threshold values (CSTV):
- Total:

2

2

Introduction – Materials and methods – Results - Conclusions

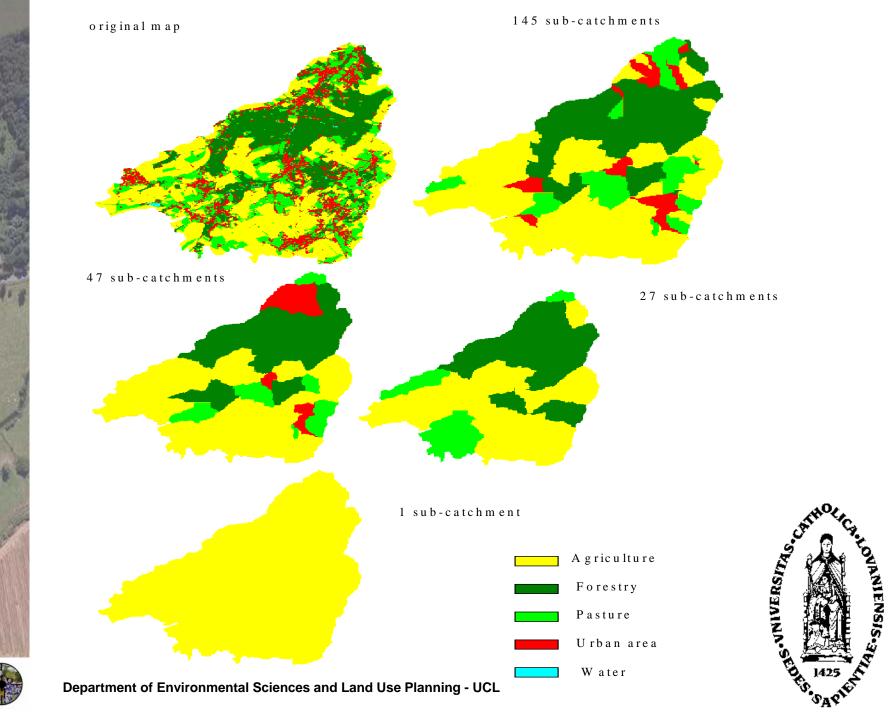
Evaluation

- Statistical calculation : Nash and Sutcliffe
- Fragstat indexses:
 - •NP- Number of patches
 - •PR-Number of patches within a landscape
 - •RPR- Number of different patch type within a landscape divided by the maximum potential number of patch types
 - AI Aggregation index
- •ArcView calculation : Differences in grid values

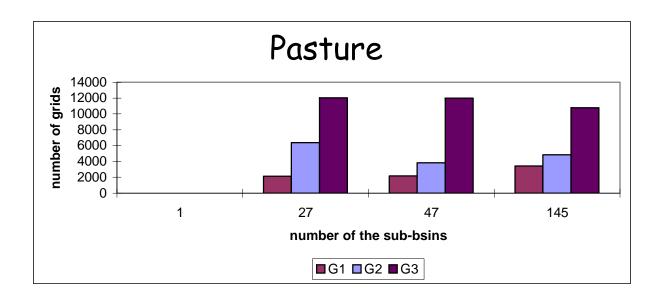
Results

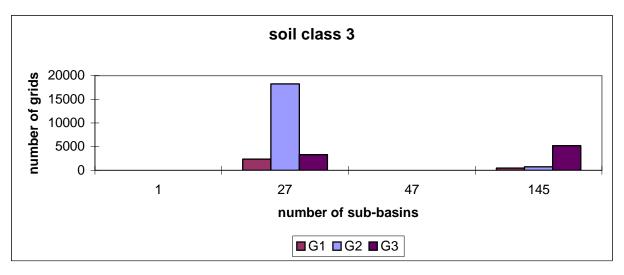
Land use –generic				
Index	NP	PR	RPR	AI
Orginal map	2150	6	-	80.18
145 sub-basins	33	4	66.67	97.46
47 sub-basins	14	4	66.67	98.48
27 sub-basins	8	4	66.67	98.92
1 sub-basin	1	1	16.67	99.73

Land use –detail					
Index	NP	PR	RPR	AI	
Orginal map	5141	23	-	68.8	
145 sub-basins	48	12	52.17	96.85	
47 sub-basins	15	7	30.43	98.4	
27 sub-basins	14	6	26.09	98.83	
1 sub-basin	1	1	4.35	99.73	

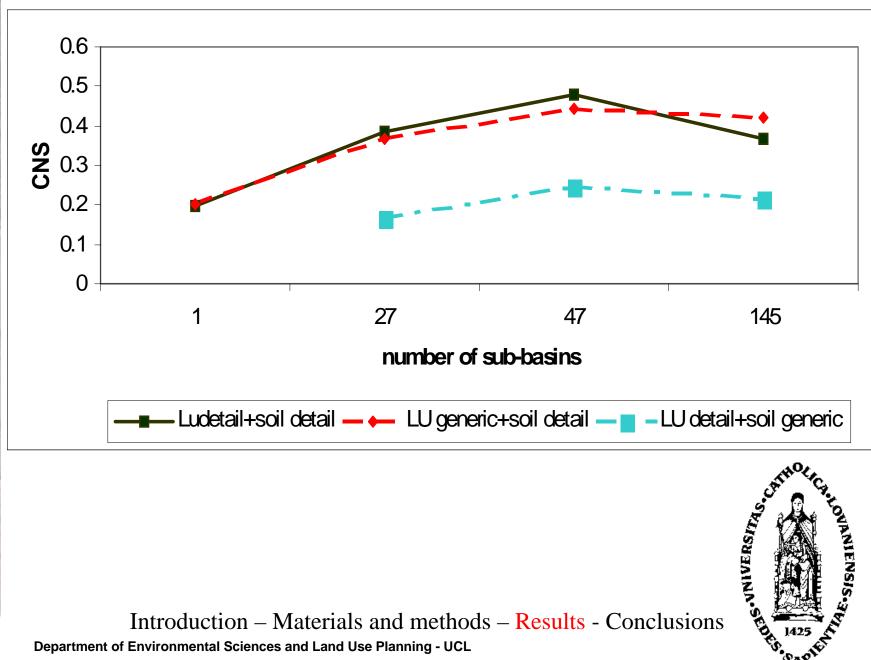

Soil map –generic					
Index	NP	PR	RPR	AI	
Orginal map	28	3	-	97.60	
145 sub-basins	15	3	100	97.77	
47 sub-basins	10	3	100	98.47	
27 sub-basins	7	3	100	98.87	
1 sub-basin	1	1	33.33	99.73	

Soil map –detail					
Index	NP	PR	RPR	AI	
Orginal map	1159	6	-	82.21	
145 sub-basins	29	6	50	97.3	
47 sub-basins	8	3	50	98.79	
27 sub-basins	8	3	50	98.79	
1 sub-basin	1	1	16.67	99.73	





Introduction – Materials and methods – Results - Conclusions



SaQ

Conclusions

- The model is very sensitive to the resolution and the quality of input maps
- The fragmantation of the input data and dispersion of map objects over the area are a very important driver in HRU creation
- The proper preparation of input data is crucial for proper application of the SWAT model
- It is advised to aggregate certain information before appling the model. By doing this the HRU's creation is better controlled.

Thank you for your attention

